Bài tập giải tam giác hình học lớp 10 năm 2024

Tuyển tập các tài liệu môn Toán hay nhất về chủ đề HỆ THỨC LƯỢNG TRONG TAM GIÁC trong chương trình môn Toán lớp 10, bao gồm các nội dung: Giá Trị Lượng Giác Của Một Góc Từ 0 Độ Đến 180 Độ; Định Lí Côsin Và Định Lí Sin Trong Tam Giác; Giải Tam Giác Và Ứng Dụng Thực Tế.

Các tài liệu HỆ THỨC LƯỢNG TRONG TAM GIÁC được biên soạn phù hợp với chương trình sách giáo khoa Toán 10: Cánh Diều, Chân Trời Sáng Tạo, Kết Nối Tri Thức Với Cuộc Sống; với đầy đủ lý thuyết, các dạng toán, ví dụ minh họa, bài tập trắc nghiệm và bài tập tự luận có đáp án và lời giải chi tiết, đầy đủ các mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng cao.

Tài liệu gồm 315 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển tập các dạng bài tập tự luận và trắc nghiệm chuyên đề hệ thức lượng trong tam giác, vectơ trong chương trình Toán 10 Cánh Diều, có đáp án và lời giải chi tiết.

BÀI 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0° ĐẾN 180°. ĐỊNH LÍ CÔSIN VÀ ĐỊNH LÍ SIN TRONG TAM GIÁC. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Giá trị lượng giác của một góc từ 0° đến 180°. + Dạng 2. Định lí cosin. + Dạng 3. Định lí sin. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Giá trị lượng giác của một góc từ 0° đến 180°. + Dạng 2. Định lí cosin. + Dạng 3. Định lí sin.

BÀI 2. GIẢI TAM GIÁC. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Giải tam giác. + Dạng 2. Tính diện tích tam giác. + Dạng 3. Áp dụng vào bài toán thực tiễn. + Dạng 4. Nhận dạng tam giác. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Giải tam giác. + Dạng 2. Tính diện tích tam giác. + Dạng 3. Áp dụng vào bài toán thực tiễn. + Dạng 4. Nhận dạng tam giác.

BÀI 3. KHÁI NIỆM VECTƠ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. PHẦN C. BÀI TẬP TRẮC NGHIỆM.

BÀI 4. TỔNG VÀ HIỆU CỦA HAI VECTƠ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Cộng trừ véctơ. + Dạng 2. Xác định điểm thỏa mãn điều kiện. + Dạng 3. Tính độ dài véctơ. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Cộng trừ véctơ. + Dạng 2. Xác định điểm thỏa mãn điều kiện. + Dạng 3. Tính độ dài véctơ.

BÀI 5. TÍCH CỦA MỘT SỐ VỚI MỘT VECTƠ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Dựng và tính độ dài véc–tơ. + Dạng 2. Phân tích véc-tơ. + Dạng 3. Chứng minh đẳng thức véc-tơ. + Dạng 4. Chứng minh một biểu thức véc–tơ không phụ thuộc vào điểm di động. + Dạng 5. Chứng minh hai điểm trùng nhau, hai tam giác có cùng trọng tâm. + Dạng 6: thẳng hàng, cố định, đồng qui. + Dạng 7. Xác định điểm, tập hợp điểm thoả mãn đẳng thức véc-tơ. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Dựng và tính độ dài véc–tơ. + Dạng 2. Phân tích véc-tơ. + Dạng 3. Chứng minh đẳng thức véc-tơ. + Dạng 4. Chứng minh một biểu thức véc–tơ không phụ thuộc vào điểm di động. + Dạng 5. Chứng minh hai điểm trùng nhau, hai tam giác có cùng trọng tâm. + Dạng 6: thẳng hàng, cố định, đồng qui. + Dạng 7. Xác định điểm, tập hợp điểm thoả mãn đẳng thức véc-tơ.

BÀI 6. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Tính tích vô hướng của hai vectơ, tính góc giữa hai vectơ. + Dạng 2. Tính độ dài của một đoạn thẳng. + Dạng 3. Chứng minh đẳng thức về tích vô hướng. + Dạng 4. Chứng minh sự vuông góc của hai vectơ, hai đường thẳng. + Dạng 5. Tập hợp điểm. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tính tích vô hướng của hai vectơ, tính góc giữa hai vectơ. + Dạng 2. Tính độ dài của một đoạn thẳng. + Dạng 3. Chứng minh đẳng thức về tích vô hướng. + Dạng 4. Chứng minh sự vuông góc của hai vectơ, hai đường thẳng. + Dạng 5. Tập hợp điểm.

Định lí: Trong một tam giác bất kì, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với \(cosin\) của góc xen giữa chúng.

Ta có các hệ thức sau:

$$\eqalign{ & {a^2} = {b^2} + {c^2} - 2bc.\cos A \, \, (1) \cr & {b^2} = {a^2} + {c^2} - 2ac.\cos B \, \, (2) \cr & {c^2} = {a^2} + {b^2} - 2ab.\cos C \, \, (3) \cr} $$

Hệ quả của định lí cosin:

\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)

\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

\(\cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Áp dụng: Tính độ dài đường trung tuyến của tam giác:

Cho tam giác \(ABC\) có các cạnh \(BC = a, CA = b\) và \(AB = c\). Gọi \(m_a,m_b\) và \(m_c\) là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh \(A, B, C\) của tam giác. Ta có

\({m_{a}}{2}\) = \(\dfrac{2.(b{2}+c^{2})-a^{2}}{4}\)

\({m_{b}}{2}\) = \(\dfrac{2.(a{2}+c^{2})-b^{2}}{4}\)

\({m_{c}}{2}\) = \(\dfrac{2.(a{2}+b^{2})-c^{2}}{4}\)

2. Định lí sin

Định lí: Trong tam giác \(ABC\) bất kỳ, tỉ số giữa một cạnh và sin của góc đối diện với cạnh đó bằng đường kính của đường tròn ngoại tiếp tam giác, nghĩa là

\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R\)

với \(R\) là bán kính đường tròn ngoại tiếp tam giác

Công thức tính diện tích tam giác

Diện tích \(S\) của tam giác \(ABC\) được tính theo một trong các công thức sau

\(S = \dfrac{1}{2} ab \sin C= \dfrac{1}{2} bc \sin A \) \(= \dfrac{1}{2}ca \sin B \, \,(1)\)

\(S = \dfrac{abc}{4R}\, \,(2)\)

\(S = pr\, \,(3)\)

\(S = \sqrt{p(p - a)(p - b)(p - c)}\) (công thức Hê - rông) \((4)\)

Trong đó:\(BC = a, CA = b\) và \(AB = c\); \(R, r\) là bán kính đường tròn ngoại tiếp, bk đường tròn nội tiếp và \(S\) là diện tích tam giác đó.

3. Giải tam giác và ứng dụng vào việc đo đạc

Giải tam giác : Giải tam giác là đi tìm các yếu tố (góc, cạnh) chưa biết của tam giác khi đã biết một số yếu tố của tam giác đó.

Muốn giải tam giác ta cần tìm mối liên hệ giữa các góc, cạnh đã cho với các góc, các cạnh chưa biết của tam giác thông qua các hệ thức đã được nêu trong định lí cosin, định lí sin và các công thức tính diện tích tam giác.

Các bài toán về giải tam giác: Có 3 bài toán cơ bản về gỉải tam giác:

  1. Giải tam giác khi biết một cạnh và hai góc.

\=> Dùng định lí sin để tính cạnh còn lại.

  1. Giải tam giác khi biết hai cạnh và góc xen giữa

\=> Dùng định lí cosin để tính cạnh thứ ba.

Sau đó dùng hệ quả của định lí cosin để tính góc.

  1. Giải tam giác khi biết ba cạnh

Đối với bài toán này ta sử dụng hệ quả của định lí cosin để tính góc:

\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)

\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

\(cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Chú ý:

1. Cần lưu ý là một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2)