Copolymer of methacrylic acid and ethyl acrylate là gì năm 2024

Ruiz, Sara Melisa Arciniegas; Olvera, Lilia Gutiérrez; Chacón, Sara del Carmen Caballero; Estrada, Dinorah Vargas

2015-04-01

To determine the pharmacokinetics of doxycycline hyclate administered orally in the form of experimental formulations with different proportions of acrylic acid-polymethacrylate-based matrices. 30 healthy adult dogs. In a crossover study, dogs were randomly assigned (in groups of 10) to receive a single oral dose (20 mg/kg) of doxycycline hyclate without excipients (control) or extended-release formulations (ERFs) containing doxycycline, acrylic acid polymer, and polymethacrylate in the following proportions: 1:0.5:0.0075 (ERF1) or 1:1:0.015 (ERF2). Serum concentrations of doxycycline were determined for pharmacokinetic analysis before and at several intervals after each treatment. Following oral administration to the study dogs, each ERF resulted in therapeutic serum doxycycline concentrations for 48 hours, whereas the control treatment resulted in therapeutic serum doxycycline concentrations for only 24 hours. All pharmacokinetic parameters for ERF1 and ERF2 were significantly different; however, findings for ERF1 did not differ significantly from those for the control treatment. Results indicated that both ERFs containing doxycycline, acrylic acid polymer, and polymethacrylate had an adequate pharmacokinetic-pharmacodynamic relationship for a time-dependent drug and a longer release time than doxycycline alone following oral administration in dogs. Given the minimum effective serum doxycycline concentration of 0.26 μg/mL, a dose interval of 48 hours can be achieved for each tested ERF. This minimum inhibitory concentration has the potential to be effective against several susceptible bacteria involved in important infections in dogs. Treatment of dogs with either ERF may have several benefits over treatment with doxycycline alone.

  • Poly(methacrylic) Acid and g-methacryloxypropyltrimethoxy Silane/Clay Nanocomposites Prepared by In-Situ Polymerization OpenAIRE GÜLTEK, Ahmet; SEÇKİN, Turgay 2002-01-01 Poly(methacrylic acid) and poly(acrylic acid) nanocomposites were prepared by in-situ polymerization of g-methacryloxypropyltrimethoxysilane (A174)/clay nanocomposites in which the macromonomer was generated by grafting A-174 onto activated clay samples via hydroxyl groups or via intercalation. In- situ polymerization was carried out in the presence of an initiator. It was found that the structural affinity between the methacrylic or acrylic acid monomers and the amount of clay playe...
  • 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers. Science.gov (United States) 2010-04-01 ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...
  • Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density. Science.gov (United States) Sulatha, Muralidharan S; Natarajan, Upendra 2015-09-24 We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.
  • Microstructural characterization of a novel methyl acrylate-ethyl acrylate copolymer system Energy Technology Data Exchange (ETDEWEB) Olivares, M.; Castano, V.M. [Instituto de Fisica, UNAM, A.P. 1-1010, Queretaro, Mexico (Mexico); Molina, J.P.; Vazquez, F. [Facultad de Quimica UAEMex, Paseo Tollocan esq. Paseo Colon, Toluca, Estado de Mexico (Mexico) 1998-12-31 A number of different compositions of a novel methyl acrylate-ethyl acrylate copolymer were prepared by emulsion polymerization with potassium persulfate as initiator. The compositions synthesized were: 100/0, 75/25, 50/50, 25/75 and 0/100 on weight of methyl acrylate/ethyl acrylate at different temperatures and concentrations of initiators. The effect of other conditions were also studied. The samples were analyzed by Transmission Electron Microscopy. It was found that the size of aggregates and dispersion on sizes are controlled by the synthesis conditions, result partially supported by light scattering. (Author)
  • Microstructural characterization of a novel methyl acrylate-ethyl acrylate copolymer system International Nuclear Information System (INIS) Olivares, M.; Castano, V.M.; Molina, J.P.; Vazquez, F. 1998-01-01 A number of different compositions of a novel methyl acrylate-ethyl acrylate copolymer were prepared by emulsion polymerization with potassium persulfate as initiator. The compositions synthesized were: 100/0, 75/25, 50/50, 25/75 and 0/100 on weight of methyl acrylate/ethyl acrylate at different temperatures and concentrations of initiators. The effect of other conditions were also studied. The samples were analyzed by Transmission Electron Microscopy. It was found that the size of aggregates and dispersion on sizes are controlled by the synthesis conditions, result partially supported by light scattering. (Author)
  • Dynamically formed hydrous zirconium (IV) oxide-polyelectrolyte membranes. III: Poly(acrylic acid) and substituted poly(acrylic acid) homo, co and terpolymer membranes International Nuclear Information System (INIS) Van Reenen, A.J.; Sanderson, R.D. 1989-01-01 A series of acrylic acid and substituted acrylic acid homo, co and terpolymers was synthesised. These polymers were used as polyelectrolytes in dynamically formed hydrous zirconium (iv) oxide-polyelectrolyte membranes. Substitution of the acrylic acid α-hydrogen was done to increase the number of carboxylic acid groups per monomer unit and to change the acid strength of acrylic acid carboxylic acid group. None of these changes improved the salt rejection of these membranes over that of commercially used poly(acrylic acid). Improvement in rejection was found when a hydrophobic comonomer, vinyl acetate, was used in conjunction with acrylic acid in a copolymer dynamic membrane. 16 refs., 6 figs., 1 tab
  • Evaluation of scission and crosslinking yields in γ-irradiated poly(acrylic acid) and poly(methacrylic acid) from weight- and Ζ-average molecular weights determined by sedimentation equilibrium International Nuclear Information System (INIS) Hill, D.J.T.; O'Donnell, J.H.; Winzor, C.L.; Winzor, D.J. 1990-01-01 Weight- and Ζ-average molecular weights, M-bar W (D) and M-bar Ζ (D), of poly(methacrylic acid) (PMMA) and poly(acrylic acid) (PAA) have been determined by sedimentation equilibrium in the ultracentrifuge after various doses D of γ-radiation in vacuum. Relationships between [M i (0)/M i (D)-1]/D and D (i=w or Ζ), derived recently by O'Donnell and coworkers, have been used to determine radiation chemical yields for scission and crosslinking of G(S)=6.0, G(X)=0 for PMAA and G(S)=0, G(X)=0.44 for PAA. Allowance was necessary for the effects of COOH decomposition on the average values of the molecular weight and partial specific volume for irradiated PAA. (author)
  • Direct Synthesis of Hyperbranched Poly(acrylic acid-co-3-hydroxypropionate Efkan Çatıker 2015-01-01 Full Text Available Hyperbranched poly(acrylic acid-co-3-hydroxypropionate (PAcHP was synthesized by base-catalyzed hydrogen transfer polymerization of acrylic acid through one step. The copolymers obtained through solution and bulk polymerization were insoluble in water and all organic solvents tried. Structural and compositional characterizations of hyperbranched PAcHP were performed by using FTIR, solid 13C-NMR, TGA, and titrimetric analysis. Acrylate fraction of the hyperbranched PAcHP obtained via bulk polymerization was determined as 60–65% by comparing TGA curves of hyperbranched PAcHP and pure poly(3-hydroxy propionate (PHP. However, analytical titration of the same sample revealed that acrylic acid units were about 47.3%. The results obtained from TGA and analytical titration were used to evaluate the chemical structure of the copolymer. Hyperbranched PAcHP exhibited hydrogel properties. Swelling behavior of the copolymer was investigated at a wide pH range and ionic strength. The dynamic swelling profiles of hyperbranched PAcHP exhibited a fast swelling behavior in the first hour and achieved the equilibrium state within 12 h in PBS. Depending on the conditions, the copolymers exhibited swelling ratios up to 2100%. As the copolymer has easily biodegradable propionate and versatile functional acrylic acid units, it can be used as not only biodegradable material in medical applications but also raw material in personal care commodities.
  • Development of polymethacrylate nanospheres as targeted delivery systems for catechin within the gastrointestinal tract Science.gov (United States) Pool, Hector; Luna-Barcenas, Gabriel; McClements, David Julian; Mendoza, Sandra 2017-09-01 In this study, pH-sensitive nanospheres were fabricated using a polymethacrylate-based copolymer to encapsulate, protect, and release catechin, and thereby overcome its poor water solubility and low oral bioaccessibility. The polymer used was a polymethacrylic acid-co-ethyl acrylate 1:1 copolymer that dissolves above pH 5.5, and so can be used to retain and protect bioactives within the stomach but releases them in the small intestine. Catechin-loaded nanospheres were fabricated using the solvent displacement method. Physicochemical characterization of the nanospheres indicated that they were relatively small ( d = 160 nm) and had a high negative charge ( ζ = - 36 mV), which meant that they had good stability to aggregation under physiological conditions (pH 7.2). Catechin was trapped within the nanospheres at an encapsulation efficiency of about 51% in an amorphous state. A simulated gastrointestinal study showed that catechin was slowly released under gastric conditions (pH 2.5), but rapidly released under small intestine conditions (pH 7.2). The observed improvement in the antioxidant activity and bioaccessibility of catechin after encapsulation was attributed to the fact that it was in an amorphous state and had good water dispersibility. This study provides useful information for the formulation of novel delivery systems to improve the dispersibility, bioaccessibility, and bioactivity of catechin and potentially other active components. These delivery systems could be used to improve the efficacy of bioactive components in foods, supplements, and pharmaceutical products.
  • Ultrasonic velocities, densities, and excess molar volumes of binary mixtures of N,N-dimethyl formamide with methyl acrylate, or ethyl acrylate, or butyl acrylate, or 2-ethyl hexyl acrylate at T = 308.15 K Energy Technology Data Exchange (ETDEWEB) Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, Andhra Pradesh (India); Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: [email protected] [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India) 2011-12-15 Highlights: > Positive values of V{sub m}{sup E}, indicate dispersion forces between acrylic esters and DMF. > V{sub m}{sup E} values compared with Redlich-Kister polynomial. > Partial molar volumes data conclude that weak interactions exist in the systems. > Measured velocity values compared with theoretical values obtained by polynomials. - Abstract: Ultrasonic velocities, u, densities, {rho}, of binary mixtures of N,N-dimethyl formamide (DMF) with methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA), including pure liquids, over the entire composition range have been measured at T = 308.15 K. Using the experimental results, the excess molar volume, V{sub m}{sup E}, partial molar volumes, V-bar {sub m,1}, V-bar{sub m,2}, and excess partial molar volumes, V-bar{sub m,1}{sup E}, V-bar{sub m,2}{sup E} have been calculated. Molecular interactions in the systems have been studied in the light of variation of excess values of calculated properties. The excess properties have been fitted to Redlich-Kister type polynomial and the corresponding standard deviations have been calculated. The positive values of V{sub m}{sup E} indicate the presence of dispersion forces between the DMF and acrylic ester molecules. Further theoretical values of sound velocity in the mixtures have been evaluated using various theories and have been compared with experimental sound velocities to verify the applicability of such theories to the systems studied. Theoretical ultrasonic velocity data have been used to study molecular interactions in the binary systems investigated.
  • Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate Guoquan Zhu 2013-01-01 Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.
  • Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites International Nuclear Information System (INIS) Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang 2013-01-01 Fe 3 O 4 /poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe 3 O 4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe 3 O 4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release
  • Systematic investigation of the synthesis of core-shell poly(styrene-co-acrylic acid) colloids with varying shell thickness and core diameter DEFF Research Database (Denmark) Hinge, Mogens; Keiding, Kristian 2006-01-01 the morphology of the material for an specific application is going on. It is known from SFEP of styrene that the final colloidal size can be controlled by adjusting the ionic strength of the synthesis feed [1] and it is suggested that adding acrylic acid to the synthesis will result in a change...... in polymerization locus from the core to the surface [2]. There is at present not performed a systematically investigation in controlling the core size and shell thickness of poly(styrene-co-acrylic acid) core-shell colloids (poly(ST-co-AA)). Poly(ST-co-AA) colloids were synthesized by free-radical surfactant......-free emulsion co-polymerization (SFECP) at 70°C, using styrene as monomer and acrylic acid as co-monomer. Different batches of poly(ST-co-AA) colloids were synthesized with varying ionic strength and acrylic acid concentrations in the synthesis feed. The produced poly(ST-co-AA) colloids were analysed...
  • Comparative analysis of skin sensitization potency of acrylates (methyl acrylate, ethyl acrylate, butyl acrylate, and ethylhexyl acrylate) using the local lymph node assay. Science.gov (United States) Dearman, Rebecca J; Betts, Catherine J; Farr, Craig; McLaughlin, James; Berdasco, Nancy; Wiench, Karin; Kimber, Ian 2007-10-01 There are currently available no systematic experimental data on the skin sensitizing properties of acrylates that are of relevance in occupational settings. Limited information from previous guinea-pig tests or from the local lymph node assay (LLNA) is available; however, these data are incomplete and somewhat contradictory. For those reasons, we have examined in the LLNA 4 acrylates: butyl acrylate (BA), ethyl acrylate (EA), methyl acrylate (MA), and ethylhexyl acrylate (EHA). The LLNA data indicated that all 4 compounds have some potential to cause skin sensitization. In addition, the relative potencies of these acrylates were measured by derivation from LLNA dose-response analyses of EC3 values (the effective concentration of chemical required to induce a threefold increase in proliferation of draining lymph node cells compared with control values). On the basis of 1 scheme for the categorization of skin sensitization potency, BA, EA, and MA were each classified as weak sensitizers. Using the same scheme, EHA was considered a moderate sensitizer. However, it must be emphasized that the EC3 value for this chemical of 9.7% is on the borderline between moderate (10%) categories. Thus, the judicious view is that all 4 chemicals possess relatively weak skin sensitizing potential.
  • CW-laser induced microchannels in dye-polymethacrylic acid films OpenAIRE M.A. Camacho-López 2007-01-01 In this work we report on the formation of microchannels on dye-polymethacrylic acid films using a cw-laser. A focalized beam of a He-Ne laser (632.8 nm emission line) was used to form microchannels on the films. It was found that there exists a laser power density threshold for a pit formation that depends on the dye concentration. The dimensions of the laser-induced channels are dependent on the laser power density. Microchannel formation in the transparent polymethacrylic acid films was no...
  1. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid) Coated Gelatin Nanoparticles OpenAIRE Gan, Zhenhai; Ju, Jianhui; Zhang, Ting; Wu, Daocheng 2011-01-01 Poly(methacrylic acid) (PMAA)-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid)...
  2. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate/poly(N-vinyl-2-pyrrolidone/multi-walled carbon nanotubes Liu Guoqin 2014-01-01 Full Text Available Poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA was prepared in the presence of poly(N-vinyl-2-pyrrolidone (PVP and multiwalled carbon nanotubes (MWNTs via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased.
  3. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate)/poly(N-vinyl-2-pyrrolidone)/multi-walled carbon nanotubes Energy Technology Data Exchange (ETDEWEB) Guoqin, Liu; Wei, Miao [College of Material Science and Engineering, Henan University of Technology (China); Lin-Jian, Shangguan, E-mail: [email protected] [School of Mechanical Engineering, North China University of Water Conservancy and Electric Power (China) 2014-06-01 Poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) was prepared in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) and multi-walled carbon nanotubes (MWNTs) via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA)/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA)/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM) revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA)/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased. (author)
  4. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions Science.gov (United States) Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N. 2014-09-01 The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.
  5. Stability of poly(N-isopropylacrylamide-co-acrylic acid polymer microgels under various conditions of temperature, pH and salt concentration Zahoor H. Farooqi 2017-03-01 Full Text Available This research article describes the colloidal stability of poly(N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AAc] polymer microgels with different acrylic acid contents in aqueous medium under various conditions of temperature, pH and sodium chloride concentrations. Three samples of multi-responsive P(NIPAM-co-AAc polymer microgels were synthesized using different amounts of acrylic acid by free radical emulsion polymerization. Dynamic laser light scattering was used to investigate the responsive behavior and stability of the prepared microgels under various conditions of pH, temperature and ionic strength. The microgels were found to be stable at all pH values above the pKa value of acrylic acid moiety in the temperature range from 15 to 60 °C in the presence and absence of sodium chloride. Increase in temperature, salt concentration and decrease in pH causes aggregation and decreases the stability of microgels due to the decrease in hydrophilicity.
  6. Dielectric properties of solution-grown-undoped and acrylic-acid ... Indian Academy of Sciences (India) Dielectric capacities and losses were measured, in the temperature (50–170°C) and frequency (01–100 kHz range), for undoped and acrylic acid (AA) doped ethyl cellulose (EC) films (thickness about 20 m) with progressive increase in the concentration of dopant in the polymer matrix. The variation of capacity with ...
  7. Preparation and drug-loading properties of Fe{sub 3}O{sub 4}/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites Energy Technology Data Exchange (ETDEWEB) Lu, Wensheng [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China); Shen, Yuhua, E-mail: [email protected] [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Xie, Anjian [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhang, Weiqiang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China) 2013-11-15 Fe{sub 3}O{sub 4}/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe{sub 3}O{sub 4} nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe{sub 3}O{sub 4} nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.
  8. Development of Electrically Conductive Transparent Coatings for Acrylic Plastic Science.gov (United States) 1952-12-01 after drying, but increased to 4,000 megoihms/square after 16 hours. 4. Polyacrylic-polyamine Cop-lyrrvrs Aqueous solutions of polymethacrylic acid ...methacrylic acid -methyl methaerylate copolymer re•I. The composite material, i. e., the acrylic and applied coating, retains essentially all the original...ation in 5%, NaOH solution for 5 minutes, rinsed in distilled water, immersed with agitation in 1516 nitric acid for 3 minutes and finally rinsed well
  9. Effects of composition and layer thickness of a butyl acrylate/acrylic acid copolymer on the adhesion properties Energy Technology Data Exchange (ETDEWEB) Ghim, Deoukchen; Kim, Jung Hyeun [University of Seoul, Seoul (Korea, Republic of) 2016-02-15 Acrylic pressure-sensitive adhesives are synthesized by solution copolymerization using n-butyl acrylate and acrylic acid (AA) in ethyl acetate anhydrous. The copolymer composition is controlled for good adhesive properties by varying AA content. The monomer conversion is measured by the gravimetric method and FTIR technique. The adhesive layer thickness is measured by scanning electron microscopy, and the adhesive properties are evaluated with loop tack, 180 .deg. peel, and holding time measurements. The peel force increases with increasing the AA content up to 3 wt% and decreases at the AA content higher than 3 wt%, but the tack force decreases with increasing the AA content. The holding time increases with increasing the AA content, and it shows a similar trend with the T{sub g} of adhesives. The increase of layer thickness improves tack and peel forces, but it weakens the holding power. A tape thickness of about 20 μm shows well-balanced properties at 3 wt% AA content in the acrylic copolymer system.
  10. Effects of composition and layer thickness of a butyl acrylate/acrylic acid copolymer on the adhesion properties International Nuclear Information System (INIS) Ghim, Deoukchen; Kim, Jung Hyeun 2016-01-01 Acrylic pressure-sensitive adhesives are synthesized by solution copolymerization using n-butyl acrylate and acrylic acid (AA) in ethyl acetate anhydrous. The copolymer composition is controlled for good adhesive properties by varying AA content. The monomer conversion is measured by the gravimetric method and FTIR technique. The adhesive layer thickness is measured by scanning electron microscopy, and the adhesive properties are evaluated with loop tack, 180 .deg. peel, and holding time measurements. The peel force increases with increasing the AA content up to 3 wt% and decreases at the AA content higher than 3 wt%, but the tack force decreases with increasing the AA content. The holding time increases with increasing the AA content, and it shows a similar trend with the T g of adhesives. The increase of layer thickness improves tack and peel forces, but it weakens the holding power. A tape thickness of about 20 μm shows well-balanced properties at 3 wt% AA content in the acrylic copolymer system.
  11. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites. Science.gov (United States) Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong 2014-03-01 A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.
  12. Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: whys and wherefores. Science.gov (United States) Yan, Rui; Zhang, Yaoyao; Wang, Xiaohui; Xu, Jianxiong; Wang, Da; Zhang, Wangqing 2012-02-15 Synthesis of porous poly(styrene-co-acrylic acid) (PS-co-PAA) microspheres through one-step soap-free emulsion polymerization is reported. Various porous PS-co-PAA microspheres with the particle size ranging from 150 to 240 nm and with the pore size ranging from 4 to 25 nm are fabricated. The porous structure of the microspheres is confirmed by the transmission electron microscopy measurement and Brunauer-Emmett-Teller (BET) analysis. The reason for synthesis of the porous PS-co-PAA microspheres is discussed, and the phase separation between the encapsulated hydrophilic poly(acrylic acid) segment and the hydrophobic polystyrene domain within the PS-co-PAA microspheres is ascribed to the pore formation. The present synthesis of the porous PS-co-PAA microspheres is anticipated to be a new and convenient way to fabricate porous polymeric particles. Copyright © 2011 Elsevier Inc. All rights reserved.
  13. Catalytic Cracking of Lactide and Poly(Lactic Acid) to Acrylic Acid at Low Temperatures. Science.gov (United States) Terrade, Frédéric G; van Krieken, Jan; Verkuijl, Bastiaan J V; Bouwman, Elisabeth 2017-05-09 Despite being a simple dehydration reaction, the industrially relevant conversion of lactic acid to acrylic acid is particularly challenging. For the first time, the catalytic cracking of lactide and poly(lactic acid) to acrylic acid under mild conditions is reported with up to 58 % yield. This transformation is catalyzed by strong acids in the presence of bromide or chloride salts and proceeds through simple S N 2 and elimination reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  14. Improved Method for Preparation of Amidoxime Modified Poly(acrylonitrile-co-acrylic acid: Characterizations and Adsorption Case Study Nur Amirah Mohd Zahri 2015-07-01 Full Text Available Redox polymerization of poly(acrylonitrile-co-acrylic acid (poly(AN-co-AA is performed at 40 °C under N2 gas by varying the ratio of acrylonitrile (AN and acrylic acid (AA in the feed. The yield production of poly(acrylonitrile (PAN is 73% and poly(AN-co-AA with a feed ratio of 93:7 is the highest yield (72%. The PAN and poly(AN-co-AA are further chemically modify with hydroxylamine hydrochloride. The FTIR spectroscopy is used to confirm the copolymerization of poly(AN-co-AA and chemical modification of poly(AN-co-AA. Elemental microanalysis shows that the overall trend percentage of carbon, hydrogen, and nitrogen for all feed ratios are slightly decreasing as the feed ratio of AA is increasing except for poly(AN-co-AA 93:7. The SEM images shows that spherical diameter of poly(AN-co-AA is smaller compared to the PAN and amidoxime (AO modified poly(AN-co-AA. The TGA (thermogravimetric analysis analysis reveals that the poly(AN-co-AA degrades at lower temperatures compared to the PAN but higher than AO modified poly(AN-co-AA. The case study adsorption test showed that the AO modified poly(AN-co-AA 93:7 had the highest percentage removal of Cd2+ and Pb2+.
  15. Removal of Heavy Metal Ions by Using Composite of Cement Kiln Dust/Ethylene Glycol co Acrylic Acid Prepared by y-Irradiation International Nuclear Information System (INIS) Sokker, H.H.; Abdel-Rahman, H.A.; Khattab, M.M.; Ismail, M.R. 2010-01-01 Various composites of cement kiln dust (CKD) and poly(ethylene glycol co acrylic acid) using y-irradiation was investigated. The samples were prepared using three percentages of cement kiln dust namely, 20, 50 and 75 by wt % and mixed with an equimolar ratio (1:1) of ethylene glycol and acrylic acid then irradiated at doses; 10,20 and 30 kGy of gamma-irradiation. The results showed that (CKD) and poly(ethylene glycol co acrylic acid) composites were formed only at 30 kGy. In addition, CKD alone has the lowest degree of removal of heavy metal ions compared with the prepared composites. A composite containing 75% cement kiln dust by weight percentage, showed the highest degree of removal of cobalt ions, whereas, a composite of 20% CKD showed the highest degree for cadmium ion removal. While the composite of 75% CKD showed a higher selectivity of cobalt ion than cadmium ion in their mixed solution.
  16. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes International Nuclear Information System (INIS) Du Feipeng; Yang Yingkui; Xie Xiaolin; Wu Kangbing; Gan Tian; Liu Lang 2008-01-01 Water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes (MWNT-g-P(SSS-co-AA)) with core-shell nanostructure were successfully synthesized by in situ free radical copolymerization of sodium 4-strenesulfonate (SSS) and acrylic acid (AA) in the presence of MWNTs terminated with vinyl groups; their structure was characterized by FTIR, 1 H NMR, Raman, TGA and TEM. The results showed that the thickness and content of the copolymer layer grafted onto the MWNT surface are about 7-12 nm and 82.3%, respectively. The P(SSS-co-AA) covalently grafted on MWNTs provides MWNT-g-P(SSS-co-AA) with good hydrophilicity and solubility in water. Then a novel MWNT-g-P(SSS-co-AA)-modified glassy carbon electrode was fabricated by coating; its electrochemical properties were evaluated by electrochemical probe of K 3 [Fe(CN) 6 ], and its catalytic behaviors to the electrochemical oxidation processes of dopamine (DA) and serotonin (5-HT) were investigated. Since the MWNT-g-P(SSS-co-AA)-modified electrode possesses strong electron transfer capability, high electrochemical activity and catalytic ability, it can be used in sensitive, selective, rapid and simultaneous monitoring of biomolecules
  17. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber OpenAIRE Jamil, Siti Nurul Ain Md; Daik, Rusli; Ahmad, Ishak 2014-01-01 A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermog...
  18. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid Coated Gelatin Nanoparticles Zhenhai Gan 2011-01-01 Full Text Available Poly(methacrylic acid (PMAA-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid coated gelatin (FPMAAG nanoparticles had a uniform spherical shape and a size distribution of 60±5 nm. Infrared spectral analysis confirmed the formation of PMAA coating on the gelatin nanoparticles. Based on UV-Vis spectra, the loading efficiency of rhodamine B for the FPMAAG nanoparticles was 0.26 μg per mg nanoparticles. The encapsulated rhodamine B could sustain for two weeks. Favorable fluorescence property and fluorescence imaging of cells confirmed that the FPMAAG nanoparticles have promising biochemical, bioanalytical, and biomedical applications.
  19. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites Energy Technology Data Exchange (ETDEWEB) Song, Cunfeng [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chang, Ying; Cheng, Ling; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: [email protected] [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Zhang, Long; Zhong, Lina [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Dai, Lizong, E-mail: [email protected] [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China) 2014-03-01 A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. - Highlights: • A new type of antibacterial agent (PSA/Ag-NPs nanocomposites) was synthesized. • The antibacterial activity against S. aureus and E. coli was studied. • Inhibition zone, MIC, MBC, and bactericidal kinetics were evaluated. • PSA/Ag-NPs nanocomposites showed excellent antibacterial activity.
  20. Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies. Science.gov (United States) Mittal, H; Mishra, Shivani B; Mishra, A K; Kaith, B S; Jindal, R; Kalia, S 2013-10-15 Biodegradation studies of Gum ghatti (Gg) and acrylamide-co-acrylic acid based flocculants [Gg-cl-poly(AAm-co-AA)] have been reported using the soil composting method. Gg-cl-poly(AAm-co-AA) was found to degrade 89.76% within 60 days. The progress of biodegradation at each stage was monitored through FT-IR and SEM. Polymer was synthesized under pressure using potassium persulphate-ascorbic acid as a redox initiator and N,N'-methylene-bis-acrylamide as a crosslinker. Synthesized polymer was found to show pH, temperature and ionic strength of the cations dependent swelling behavior. Gg-cl-poly(AAm-co-AA) was utilized for the selective absorption of saline from different petroleum fraction-saline emulsions. The flocculation efficiency of the polymer was studied as a function of polymer dose, temperature and pH of the solution. Gg-cl-poly(AAm-co-AA) showed maximum flocculation efficiency with 20 mol L(-1) polymer dose in acidic medium at 50 °C. Copyright © 2013. Published by Elsevier Ltd.
  1. Antiviral Activity of Polyacrylic and Polymethacrylic Acids Science.gov (United States) De Somer, P.; De Clercq, E.; Billiau, A.; Schonne, E.; Claesen, M. 1968-01-01 Polyacrylic acid (PAA) and polymethacrylic acid (PMAA) were investigated for their antiviral properties in tissue culture. Compared to other related polyanions, as dextran sulfate, polystyrene sulfonate, polyvinyl sulfate, and polyphloroglucinol phosphate, PAA and PMAA were found to be significantly more antivirally active and less cytotoxic. PMAA added 24 hr prior to virus inoculation inhibited viral growth most efficiently but it was still effective when added 3 hr after infection. Neither a direct irreversible action on the virus nor inhibition of virus penetration into the cell could explain the antiviral activity of PMAA. PMAA inhibited the adsorption of the virus to the host cell and suppressed the one-cycle viral synthesis in tissue cultures inoculated with infectious RNA. PMID:4302187
  2. Impact of Internal and External Factors on EBC-pH and FeNO Changes in Humans Following Challenge with Ethyl Acrylate. Science.gov (United States) Hoffmeyer, F; Sucker, K; Berresheim, H; Monsé, C; Jettkant, B; Beine, A; Raulf, M; Bünger, J; Brüning, T 2017-01-01 Acute effects of ethyl acrylate exposure at 5 ppm for 4 h include changes of pH in exhaled breath condensate (EBC-pH) and exhaled nitric oxide (FeNO). So far, few data have been reported for atopic persons or the impact of the exposure conditions on biomarkers, e.g., constant versus variable application of irritants. Nine atopic and eighteen healthy volunteers without bronchial hyperresponsiveness were exposed for 4 h to ethyl acrylate concentrations of 0.05 ppm (sham), 5 ppm (constant concentration), and 0-10 ppm (variable, mean concentration of 5 ppm) in an exposure laboratory. A positive atopic status was defined according to specific IgE concentrations to common inhalant allergens (sx1 ≥ 0.35 kU/L). Biomarker levels were assessed before and after challenge and adjusted for levels after sham exposure (net response). Ethyl acrylate at constant, but not at variable concentrations induced a significant change in the net responses of EBC-pH and FeNO. Concerning FeNO, this could be observed only for atopic persons. The changes of biomarker levels were related to their baseline values. Biomarker responses to challenge with ethyl acrylate may be influenced by the patterns of application as well as baseline airway inflammation and atopic status of the volunteers.
  3. Synthesis and characterization of organometallic copolymers of acrylic acid g-polyethylene, with Mo, Fe, Co, Zn and Ni International Nuclear Information System (INIS) Dorantes R, G.L. 1997-01-01 In this study, the preparation of a series of low density polyethylenes grafted with acrylic acid is presented. The grafting reactions were initiated by different doses of γ radiation; it was observed that grafting increased with the doses of radiation. The prepared copolymers were coordinated with different metals, as Mo, Fe, Co, Zn and Ni. The amount of metal supported on the polymer was determined by atomic absorption. Infrared spectroscopy and thermogravimetric analysis confirmed the metal chelation on the graft copolymer. The film surfaces were observed by scanning electron microscopy. positron annihilation spectroscopy revealed a decrease on the free volume in the low density polyethylene after the grafting with acrylic acid. (Author)
  4. Synthesis and Electrical Resistivity of Nickel Polymethacrylate Science.gov (United States) Chohan, M. H.; Khalid, A. H.; Zulfiqar, M.; Butt, P. K.; Khan, Farah; Hussain, Rizwan Synthesis of nickel polymethacrylate was carried out using methanolic solutions of sodium hydroxide and polymethacrylic acid. The electrical resistivity of the pellets made from Ni-polymethacrylate was measured at different voltages and temperatures. Results showed that the electrical resistivity of Ni-polymethacrylate decreases significantly with voltage in high temperature regions but the decrease is insignificant at temperatures nearing room temperature. The activation energy at low temperatures is approximately 0.8 eV whereas at high temperature it is in the range 0.21-0.27 eV.
  5. Structure of polyacrylic acid and polymethacrylic acid solutions : a small angle neutron scattering study OpenAIRE Moussaid , A.; Schosseler , F.; Munch , J.; Candau , S. 1993-01-01 The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to t...
  6. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Science.gov (United States) Sajeesh, S; Sharma, Chandra P 2006-11-15 Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.
  7. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions International Nuclear Information System (INIS) Cemal Oezeroglu; Niluefer Metin 2012-01-01 In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔH o ), entropy (ΔS o ) and free energy change (ΔG o ) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)
  8. Extraction of metal cations by polyterephthalamide microcapsules containing a poly(acrylic acid) gel. Science.gov (United States) Laguecir, A; Ernst, B; Frère, Y; Danicher, L; Burgard, M 2002-01-01 Polyterephthalamide microcapsules containing a poly(acrylic acid) gel as a macromolecular ligand (PAA-CAPS) were prepared using an original two step polymerization process in a water-in-oil inverse emulsion system. A polyamide microcapsule containing acrylic acid, initiator and cross-linking agent, is formed by interfacial polycondensation of terephthaloyl dichloride with hexamethylenediamine. In situ radical polymerization of the microcapsule core acrylic acid is initiated to obtain encapsulated poly(acrylic acid) gel. Reference polyamide microcapsules, i.e. without ligand (CAPS), were also synthesized. The mean diameter of synthesized microcapsules was 210 microm, and the microcapsule wall thickness was evaluated by SEM and TEM observations of microcapsule cross-section cuts. The microcapsule water content was determined by thermogravimetric experiments. The extractabilities of Cu(II), Ni(II), Co(II) and Zn(II) into PAA-CAPS were examined. The stripping of the various cations can be promoted in diluted hydrochloric acid solutions.
  9. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries. Science.gov (United States) Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan 2017-11-29 Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.
  10. Interactions between Therapeutic Proteins and Acrylic Acid Leachable. Science.gov (United States) Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da 2012-01-01 Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.
  11. Structure of polyacrylic acid and polymethacrylic acid solutions: a small angle neutron scattering study Energy Technology Data Exchange (ETDEWEB) Moussaid, A. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Schosseler, F. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Munch, J.P. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Candau, S.J. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)) 1993-04-01 The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiments. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionization degrees nearly quantitative agreement with the theory is found for the polyacrylic acid system. (orig.).
  12. Structure of polyacrylic acid and polymethacrylic acid solutions : a small angle neutron scattering study Science.gov (United States) Moussaid, A.; Schosseler, F.; Munch, J. P.; Candau, S. J. 1993-04-01 The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionizaiton degrees nearly quantitative agreement with the theory is found for the polyacrylic acide system.
  13. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions OpenAIRE
  14. Katayeva; R. Mangazbayeva; R. Abdykalykova 2012-01-01 The complex formation process of hydroxypropylcellulose (HPC) with polymethacrylic acid (PMA) have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.
  15. Preparation of Fe 3O 4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride) by emulsifier-free emulsion polymerization and its interaction with DNA Science.gov (United States) Li, Xiaolong; Liu, Guoqiang; Yan, Wei; Chu, Paul K.; Yeung, Kelvin W. K.; Wu, Shuilin; Yi, Changfeng; Xu, Zushun 2012-04-01 Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.
  16. Enhancing dry adhesives and replica molding with ethyl cyano-acrylate International Nuclear Information System (INIS) Bovero, E; Menon, C 2014-01-01 The use of cyano-acrylate to improve the performance of dry adhesives and their method of fabrication is investigated. Specifically, the contributions of this work are: (1) a new adhesion method to adhere to a large variety of surfaces, (2) a strategy to increase the compliance of dry adhesives, and (3) an improved fabrication process for micro-structured dry adhesives based on replica molding. For the first contribution, the adhesion method consists of anchoring a micro-structured dry adhesive to a surface through a layer of hardened ethyl cyano-acrylate (ECA). This method increases the adhesion of the orders of magnitude at the expense of leaving residue after detachment. However, this method preserves reusability. For the second contribution, a double-sided dry adhesive is obtained by introducing a substrate with a millimeter-sized pillar structure, which enabled further increasing adhesion. For the third contribution, an ECA layer is used as a mold for the fabrication of new adhesives. These new types of molds proved able to produce dry adhesives with high reproducibility and low degradation. (paper)
  17. Towards bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of α-bilirubin International Nuclear Information System (INIS) Syu, M.-J.; Deng, J.-H.; Nian, Y.-M. 2004-01-01 With α-bilirubin as a molecular template, polymerization of methacrylic acid (MAA) was carried out with the aid of the initiator 2,2-azobisisobutyronitrile (AIBN) and the cross-linking agent ethylene glycol dimethylacrylate (EGDMA). Bulk polymerization was successfully carried out so that poly(methacrylic acid-co-ethylene glycol dimethylacrylate) (poly(MAA-EGDMA)) imprinted with α-bilirubin was first developed. UV irradiation polymerization and heated polymerization methods were compared. Effect of different ratios of monomer to EGDMA during the polymerization was also discussed. Proper solvent for better desorption of α-bilirubin from the imprinted poly(MAA-EGDMA) was investigated. In addition, SEM photos were provided for observing the differences between the surfaces of the imprinted poly(MAA-EGDMA) before and after extraction. The corresponding binding results of α-bilirubin imprinted poly(MAA-EGDMA) and non-imprinted poly(MAA-EGDMA) both after extraction were compared. How the pH values during extraction stage affected the binding capacities of the imprinted polymer as well as non-imprinted polymer were also discussed. Similar study and comparison were made for different binding pH values. Different compounds of similar molecular weight were used to show the specific binding of the imprinted polymer for bilirubin. The results further confirmed the successful binding as well as specificity of the imprinted poly(MAA-EGDMA) for α-bilirubin
  18. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers International Nuclear Information System (INIS) Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K 2010-01-01 The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ∼30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13 C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ∼four times while its response rate increased by ∼50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ∼four times with the increase in the block length of the AN moiety
  19. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers Science.gov (United States) Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K. 2010-02-01 The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ~30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ~four times while its response rate increased by ~50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ~four times with the increase in the block length of the AN moiety.
  20. Analysis of poly(styrene-co-methyl acrylate) and poly(styrene-co-butyl acrylate) by high-performance liquid chromatography NARCIS (Netherlands) Sparidans, R.W.; Claessens, H.A.; van Doremaele, G.H.J.; Herk, van A.M. 1990-01-01 Poly(styrene—co-methyl acrylate) and poly(styrene—co-butyl acrylate) were separated according to their chemical composition by gradient elution. The chromatographic separation on silica was optimized for a gradient ranging from n-heptane as a non-solvent to dichloromethane containing a small amount
  21. Recovery of Acrylic Acid Using Calcium Peroxide Nanoparticles: Synthesis, Characterisation, Batch Study, Equilibrium, and Kinetics
  22. S. De 2018-03-01 Full Text Available Recovery of acrylic acid from aqueous solution using low-cost CaO2 nanoparticles was investigated. CaO2 nanoparticles were synthesized by co-precipitation technique and characterised using XRD and FTIR. A mechanism was proposed for adsorption of acrylic acid onto CaO2 nanoparticles based on FTIR analysis. Acrylic acid recovery is highly dependent on contact time, CaO2 nanoparticle dosage, initial acrylic concentration, and temperature. Langmuir, Freundlich, Dubinin-Radushkevich, Tempkin, Hill, Redlich-Peterson, Sips and Toth isotherms were used and well represented by Redlich-Peterson isotherm (R2 = 0.9998 as compared to other isotherms. Kinetic studies revealed pseudo-second-order kinetics (k2 = 1.962·10–4 g mg–1 min–1 for adsorption of acrylic acid onto CaO2 nanoparticles. CaO2 nanoparticles exhibited high acrylic acid recovery over varied concentration ranges. The acrylic acid can be regenerated by desorption from the surface of adsorbent and utilised for numerous applications. The presented results may be useful for the design of adsorption system using nanoparticles, which can be extended to other systems.
  1. Dose response characteristics of polymethacrylic acid gel (PMAAG) for a polymerization-based dosimeter using NMR. Science.gov (United States) Iskandar, S M; Elias, S; Jumiah, H; Asri, M T M; Masrianis, A; Ab Rahman, M Z; Taiman, K; Abdul Rashid, M Y 2004-05-01 The radiation-response characteristics of polymetharylic acid gel dosimeter prepared with different concentrations of monomer and cross-linker is described in these studies. The dosimeters were prepared under the hypoxic condition in a glove box and were then irradiated with gamma-rays produced by Co-60 radionuclide that was generated at 1.25MeV energy. The irradiation took place at different doses ranged from 0Gy to 19Gy. Due to the radiation activities, chain-reaction polymerisation processes had taken place in the formation of polymethacrylic acid (PMAA) gel, which cause the dose response mechanism increased in the NMR relaxation rates of protons. It has been observed that for higher concentration of monomer and cross-linker, the polymerization rate was increased.
  2. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions
  3. Katayeva 2012-12-01 Full Text Available The complex formation process of hydroxypropylcellulose (HPC with polymethacrylic acid (PMA have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.
  4. Interpolymer complexses of vinyl ether copolymer with polyacrylic and polymethacrylic acids
  5. Shaikhutdinov 2012-03-01 Full Text Available The interactions between macromolecules of copolymers based on vinyl ethers (vinyl ether of monoethanolamine and vinyl buthyl ether and 2-acryloilamido-2-methylpropanesulphonic acid with polyacrylic and polymethacrylic acid and, as well as study the effect of interpolymer interactions in the adsorption of polymers at the aqueous solution-air interface were investigated. The observed synergistic increase in surface activity of macromolecules into polyelectrolyte mixtures explained by the formation of interpolymer complexes polyacid - copolymer.
  6. Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters Energy Technology Data Exchange (ETDEWEB) Cho, K.H. [Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Bucheon 420-767 (Korea, Republic of); Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of); Cho, S.J. [Department of Radiation Oncology, College of Medicine, Eulji University, Seongnam 461-713 (Korea, Republic of); Lee, S. [Department of Radiation Oncology, College of Medicine, Korea University, Seoul 130-701 (Korea, Republic of); Lee, S.H. [Cheil General Hospital and Women' s Healthcare Center, Kwandong University College of Medicine, Seoul 100-380 (Korea, Republic of); Min, C.K.; Kim, Y.H.; Moon, S.K.; Kim, E.S.; Chang, A.R. [Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Bucheon 420-767 (Korea, Republic of); Kwon, S.I., E-mail: [email protected] [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of) 2012-05-21 The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41{+-}0.04 HGy{sup -1}. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the {gamma}-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.
  7. Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters Science.gov (United States) Cho, K. H.; Cho, S. J.; Lee, S.; Lee, S. H.; Min, C. K.; Kim, Y. H.; Moon, S. K.; Kim, E. S.; Chang, A. R.; Kwon, S. I. 2012-05-01 The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41±0.04 HGy-1. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the γ-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.
  8. Determination of Monomers Reactivity Ratios in Ethyl Acrylate-Methacrylic Acid Copolymerization by Off-Line 1H NMR Samaneh Ashenagar 2017-03-01 Full Text Available The physical, chemical and mechanical properties of polymer systems depend on the micro-structural characteristics of their macromolecular chains. Along with the most characteristic kinetic parameters in copolymerization reactions are the reactivity ratios, which give a clear idea of the average composition and the monomer sequence distribution in copolymer systems. This research studies the solution radical copolymerization of methacrylic acid (MAA-ethyl acrylate (EA system at low conversion with 2,2'-azobisisobutyronitrile (AIBN as thermal initiator at 60°C in deuterated dimethyl sulfoxide (DMSO-d6 as a reaction solvent. In this case, the monomer reactivity ratios were determined using linear off-line 1H nuclear magnetic resonance spectroscopy (1H NMR methods such as Mayo-Louis, Finemann-Ross, Inverted Finemann-Ross , Ezrielev-Brokhina-Roskin, Joshi-Joshi, Kelen-Tudos, extended Kelen- Tudos, Mao-Huglin at low and high conversions. The next estimation process in off-line 1H NMR methods were performed by applying techniques based on ordinary least square (OLS and generalized least square (GLS. The results showed that the GLS approach compared to the OLS increased regression coefficients (R2 and the order of magnitude of parameter variances obtained from GLS was many times lower than that obtained from OLS. In addition, the monomer reactivity ratios obtained by the Mao-Huglin method and the GLS approach showed the best linear estimation.
  9. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers. Science.gov (United States) 2010-04-01 ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...
  10. Adsorptive features of poli(acrylic acid-co-hydroxyapatite) composite for UO22+ International Nuclear Information System (INIS) Liu Tonghuan; Xu Zhen; Tan Yinping; Zhong Qiangqiang; Wu Wangsuo 2016-01-01 The copolymer of poli(acrylic acid-co-hydroxyapatite) (PAA-HAP) was prepared and characterized by means of FT-IR and SEM analysis. The adsorptive features of PAA-HAP for UO 2 2+ was studied as a function of pH, adsorbent dosage, initial metal ion concentration and temperature. The adsorption isotherm data fitted well to the Langmuir isotherm model. The adsorbed UO 2 2+ can be desorbed effectively by 0.1 M HNO 3 . The maximum adsorption capacities for UO 2 2+ of the dry PAA-HAP was 1.86 x 10 -4 mol/g. The high adsorption capacity and kinetics results indicate that PAA-HAP can be used as an alternative adsorbent to remove UO 2 2+ from aqueous solution. (author)
  11. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups. Science.gov (United States) Hook, Andrew L; Scurr, David J 2016-04-01 Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information-rich nature of ToF-SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C 6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono-functional from multi-functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure-function relationships based upon ToF-SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.
  12. Radioinduced grafting of acrylic acid on expanded polystyrene matrices International Nuclear Information System (INIS) Postolache, C.; Simion, Corina; Dragomir, A.; Ponta, C.; Chirvasoiu, G.; Postolache, Carmen 1998-01-01 The unfixed surface radioactive contamination for low energy β radionuclides ( 3 H and 14 C) is determined by wiping the checked surfaces with sponge of absorbent materials. The activity built up by this sponge is measured by a liquid scintillator spectrometer. In this work, a method of obtaining sponges of expanded polystyrene with hydrophobic surface by radioinduced grafting of the acrylic acid is presented. These sponges have diameters of 28 mm, thicknesses of 1.5 - 2 mm and density of 22 mg/cm 3 . The samples were immersed in a grafting solution with the following composition: acrylic acid 30%, Cu SO 4 1%; water 69% which were deeply impregnated in repeated operations under vacuum and pressure conditions, respectively. Finally, the samples were exposed to γ radiation emitted by a 60 Co source (IETI 10 000 - IFIN-HH). The dose rates were 0.3, 0.5 and 1 Mrad/h. The range of the absorbed doses was 1 - 25 Mrad. The yields of radiochemical grafting have been determined by gravimetric, spectrophotometric and radiometric methods. The grafting agent used was 3 H labelled acrylic acid. The solvation capacity and the quenching characteristics of the grafted sponges in liquid scintillators, as well as the sampling yields have been analyzed as function of irradiation procedure and the percentage of grafted acrylic fragments. The superficial grafting of the acrylic acid has been carried out by the mentioned technique, leading to the increase of the wiping efficiency of the unfixed surface contaminating activity, without changes of polymer solubility in liquid scintillators and without the perturbation of the radioactivity detection process. (authors)
  13. Effect of acrylic acid on the properties of polyvinylpyrrolidone ... African Journals Online (AJOL) Hydrogels based on polyvinylpyrrolidone (PVP) networks grafted with acrylic acid (AAc) was prepared by using γ-rays from a Co-60 source at room temperature. The parameters like effect of radiation dose and concentration of AAc were studied. The properties such as gel content, swelling behavior and thermal stability ...
  14. Radiation-induced graft copolymerization of methyl acrylate and acrylic acid onto rubber wood fiber International Nuclear Information System (INIS) Saliza Jam; Mansor Ahmad; Wan Md Zin Wan Yunus; Khairul Zaman Mohd Dahlan 2001-01-01 Graft copolymerization of methyl acrylate and acrylic acid monomers onto rubber wood fiber (RWF) was carried out by simultaneous radiation-induced technique. The parameters affecting the grafting reaction were investigated and the optimum conditions for both monomers obtained are as follows: impregnation time = 16 hours, total dose = 30 kGy, methanol : water ratio, 3:1, monomers concentration = 40 v/v % and sulphuric acid concentration = 0.1 mol/L. Fourier Transform Infrared (FTIR), thermogravimetry analysis (TGA), and scanning electron microscope (SEM) analyses used to characterize graft copolymers. The structural investigation by x-ray diffraction (XRD) shows the degree of crystallinity of rubber wood fiber decreased with the incorporation of poly(methyl acrylate) and poly(acrylic acid) grafts. (Author)
  15. STABILITY OF EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE/ BUTYL ACRYLATE/SODIUM MONO(ETHYL POLYOXYETHYLENE) MALEATE Institute of Scientific and Technical Information of China (English) Mao-gen Zhang; Zhi-xue Weng; Zhi-ming Huang; Zu-ren Pan 1999-01-01 A series of new water-soluble bifunctional comonomers having both carboxyl and alkyl polyoxyethylene groups, such as sodium mono(ethyl polyoxyethylene) maleate (ZE series) with various molecular weights of polyoxyethylene ethyl ether, were synthesized and characterized. The effects of the structural factor, the amount and feeding mode of the comonomers, the initiator concentration and polymerization temperature on the stability of emulsifier-free emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA) in the presence of a small amount of ZE with potassium persulfate as initiator were investigated. Stable, almost monodispersed MMA/BA/ZE emulsifier-free latex particles were prepared.
  16. The preparation of highly absorbing cellulosic copolymers -the cellulose acetate/propionate-g.co-acrylic acid system International Nuclear Information System (INIS) Bilgin, V.; Guthrie, J.T. 1990-01-01 A series of copolymers based on the cellulose acetate/propionate-g.co-acrylic acid system has been prepared under radiation-induced control. These copolymers have been assessed for their water-retention capacity both in an unmodified state and after ''decrystallization'' or ''neutralization'' treatments. The grafting of acrylic acid onto the cellulose acetate/propionate had little effect on the water retention power of the cellulose acetate/propionate. However, improvements to the water retentivity was obtained after ''decrystallization'' procedures had been carried out on the copolymers using selected alkali metal salts with methanol as the continuous medium. The water-retentivity of the copolymers increased with increase in the extent of grafting, though the effect is less pronounced at high graft levels. Neutralization of the functional groups of the grafted branches provided a route to obtaining a marked increase in the level of water retentivity. Excessive salt concentrations gave reduced levels of water retentivity. Cesium carbonate and sodium carbonate have been shown to be effective in providing marked improvements in the water-retaining capacity of the copolymers. Maxima in performance are shown with respect to the treatment conditions. (author)
  17. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid). Science.gov (United States) Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin 2012-03-15 We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant
  18. Regularities in the association of polymethacrylic acid with benzethonium chloride in aqueous solutions Science.gov (United States) Tugay, A. V.; Zakordonskiy, V. P. 2006-06-01 The association of cationogenic benzethonium chloride with polymethacrylic acid in aqueous solutions was studied by nephelometry, conductometry, tensiometry, viscometry, and pH-metry. The critical concentrations of aggregation and polymer saturation with the surface-active substance were determined. A model describing processes in such systems step by step was suggested.
  19. Preparation of Paraffin@Poly(styrene-co-acrylic acid) Phase Change Nanocapsules via Combined Miniemulsion/Emulsion Polymerization. Science.gov (United States) Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao 2018-06-01 The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.
  20. Antimicrobial activity of poly(acrylic acid) block copolymers Energy Technology Data Exchange (ETDEWEB) Gratzl, Günther, E-mail: [email protected] [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria) 2014-05-01 The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.
  21. Antimicrobial activity of poly(acrylic acid) block copolymers International Nuclear Information System (INIS) Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian 2014-01-01 The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed
  22. The mechanism of interaction of polymethacrylic acid with sodium dodecylbenzenesulfonate in aqueous solutions Science.gov (United States) Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S.; Golod, T. Yu. 2009-07-01 A complex of physicochemical methods (light scattering, potentiometry, conductometry, viscometry, tensiometry, and fluorescence spectroscopy) were used to show the possibility of formation of intermolecular associates/complexes in systems with likely charged components. The driving forces of such interactions were analyzed and a possible scheme of complex formation between polymethacrylic acid and sodium dodecylbenzenesulfonate was suggested.
  1. pH dependence of the properties of waterborne pressure-sensitive adhesives containing acrylic acid. Science.gov (United States) Wang, Tao; Canetta, Elisabetta; Weerakkody, Tecla G; Keddie, Joseph L; Rivas, Urko 2009-03-01 Polymer colloids are often copolymerized with acrylic acid monomers in order to impart colloidal stability. Here, the effects of the pH on the nanoscale and macroscopic adhesive properties of waterborne poly(butyl acrylate-co-acrylic acid) films are reported. In films cast from acidic colloidal dispersions, hydrogen bonding between carboxylic acid groups dominates the particle-particle interactions, whereas ionic dipolar interactions are dominant in films cast from basic dispersions. Force spectroscopy using an atomic force microscope and macroscale mechanical measurements show that latex films with hydrogen-bonding interactions have lower elastic moduli and are more deformable. They yield higher adhesion energies. On the other hand, in basic latex, ionic dipolar interactions increase the moduli of the dried films. These materials are stiffer and less deformable and, consequently, exhibit lower adhesion energies. The rate of water loss from acidic latex is slower, perhaps because of hydrogen bonding with the water. Therefore, although acid latex offers greater adhesion, there is a limitation in the film formation.
  2. Synthesis of poly(N-isopropylacrylamide-co-acrylic acid) model compounds for filtration experiments DEFF Research Database (Denmark) Hinge, Mogens; Christensen, Morten Lykkegaard; Scales, Peter 2005-01-01 rheometry indicates that the blocks of poly(acrylic acid) are placed on the surface of the microgels. The combination of these three results reveal that the microgels have a core mainly consisting of poly(N-isopropylacrylamide) and a diffuse/cloudy surface consisting mainly of poly(acrylic acid). The core/shell...... Theoretical development within solid/liquid separation in colloidal systems is largely based on inorganic, low charged and incompressible particles. These do not reflect the properties in biosolid/organic systems. There is therefore a need for a development of colloidal and particles which mimic...
  3. Investigation of Acrylic Acid at High Pressure using Neutron Diffraction DEFF Research Database (Denmark) Johnston, Blair F.; Marshall, William G.; Parsons, Simon 2014-01-01 This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalised using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new...
  4. Raman Spectroscopy of Irradiated Normoxic Polymethacrylic Acid Gel Dosimeter Energy Technology Data Exchange (ETDEWEB) Bong, Ji Hye; Kwon, Soo Il; Cho, Yu Ra; Park, Chae Hee; Park, Hyung Wook [Kyonggi University, Suwon (Korea, Republic of); Choi, Kyu Seok; Yu, Soo Chang [Kunsan National University, Gunsan (Korea, Republic of) 2011-02-15 A quantitative analysis of the decreasing rate of the monomer and increasing rate of the polymerization was made by monitoring radiation level increments using Raman spectroscopy within the therapeutic radiation range for a normoxic polymethacrylic acid gel dosimeter. The gel dosimeter was synthesized by stirring materials such as gelatin, distilled water, methacrylic acid, hydroquinone and tetrakis phosphonium chloride at 50 .deg. C, and the synthesized gel was contained in a 10- mm diameter and 32-mm high vial to conduct measurement. 24 hours after gel synthesis, it was irradiated from 0 Gy to 20 Gy by 2 Gy using a Co-60 radiotherapy unit. With use of the Cryo FE-SEM, structural changes in the 0 Gy and 10 Gy gel dosimeters were investigated. The Raman spectra were acquired using 532-nm laser as the excitation source. In accordance with fitting the changes in C-COOH stretching (801 cm{sup -1}), C=C stretching (1639 cm{sup -1}) and vinyl CH{sub 2} stretching (3114 cm{sup -1}) vibrational modes for monomer and CH{sub 2} bending vibrational mode (1451 cm{sup -1}) for polymer, sensitive parameter S for each mode was calculated. The values of S for monomer bands and polymer band were ranged in 6.0 ± 2.6 Gy and 7.2 ± 2.3 Gy, respectively, which shows a relatively good conformity of the decreasing rate of monomer and the increasing rate of polymerization within the range of error.
  5. Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels Science.gov (United States) Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong 2012-08-01 A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.
  6. Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery. Science.gov (United States) Victor, Sunita Prem; Sharma, Chandra P 2002-10-01 This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.
  7. Characterization of γ-radiation induced polymerization in ethyl methacrylate and methyl acrylate monomers solutions Science.gov (United States) Baccaro, Stefania; Casieri, Cinzia; Cemmi, Alessia; Chiarini, Marco; D'Aiuto, Virginia; Tortora, Mariagrazia 2017-12-01 The present work is focused on the γ-radiation induced polymerization of ethyl methacrylate (EMA) and methyl acrylate (MA) monomers mixture to obtain a co-polymer with specific features. The effect of the irradiation parameters (radiation absorbed dose, dose rate) and of the environmental atmosphere on the features of the final products was investigated. Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Nuclear Magnetic Resonance high-resolution analyses of hydrogen and carbon nuclei (1H and 13C NMR) were applied to follow the γ-induced modifications by monitoring the co-polymerization process and allowed the irradiation parameters optimization. Diffusion-Ordered NMR (DOSY-NMR) data were used to evaluate the co-polymers polydispersity and polymerization degree. Since the last parameter is strongly influenced by the γ radiation and environmental conditions, a comparison among samples prepared and irradiated in air and under nitrogen atmosphere was carried out. In presence of oxygen, higher radiation was required to obtain a full solid co-polymer since a partial amount of energy released to the samples was involved in competitive processes, i.e. oxygen-containing free radicals formation and primary radicals recombination. Irrespectively to the environmental atmosphere, more homogeneous samples in term of polymerization degree dispersion was achieved at lower dose rates. At radiation absorbed doses higher than those needed for the formation of the co-polymer, while in case of samples irradiated in air heavy depolymerization was verified, a sensible increase of the samples stability was attained if the irradiation was performed under nitrogen atmosphere.
  8. [Contact dermatitis caused by acrylates among 8 workers in an elevator factory]. Science.gov (United States) Pérez-Formoso, J L; de Anca-Fernández, J; Maraví-Cecilia, R; Díaz-Torres, J M 2010-05-01 Acrylates are widely used low-molecular-weight substances, initially introduced in industry in the 1930s and subsequently applied also in medicine and the home. One of their main features is the ability to undergo polymerization. The most commonly used acrylic compounds are cyanoacrylates, methacrylates, and acrylates. To confirm suspicion of occupational disease in a group of workers in an elevator factory. We studied 8 patients with dermatitis of the hands and finger pads. In their work, the patients came into contact with acrylates. Patch testing was applied with an acrylate panel (BIAL-Aristegui, Bilbao, Spain). Seven of the patients (87. 5%) had a positive result with 1% ethylene glycol dimethacrylate. Positive were also observed for 2% hydroxyethyl methacrylate (5 patients, 62. 5%), 1% triethylene glycol dimethacrylate (4 patients, 50%), 10% ethyl methacrylate monomer (3 patients, 37. 5%), 10% methyl methacrylate monomer (2 patients, 25%), 1% ethyl acrylate (1 patient, 12. 5%), and 0. 1% acrylic acid (1 patient, 12. 5%). We highlight the strong sensitizing capacity of acrylates and the importance of taking all necessary preventive measures in industries where these substances are used. Such measures should include avoidance of contact with the product in cases where sensitization has been confirmed.
  9. Polymethacrylic acid as a new precursor of CuO nanoparticles Science.gov (United States) Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick 2012-11-01 Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.
  10. Radioluminescence of polyester resin modified with acrylic acid and its salts Science.gov (United States) Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M. Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.
  11. Radioluminescence of polyester resin modified with acrylic acid and its salts International Nuclear Information System (INIS) Szalinska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M. 1987-01-01 Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60 Co radiation. (author)
  12. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials International Nuclear Information System (INIS) Alkan, Cemil; Günther, Eva; Hiebler, Stefan; Himpel, Michael 2012-01-01 Highlights: ► Complexing groups to PEGs in a polymer could stabilize PEG at different molecular weights. ► Shape stabilized PEGs for thermal energy storage are prepared using compounds with interacting groups. ► Phase change temperature of PEGs could be changed using a complexing copolymer with acid groups. - Abstract: Blends of poly(ethylene glycol) (PEG) at 1000, 6000, and 10,000 g/mole average molecular weights and poly(acrylic acid) (PAA) or poly(ethylene-co-acrylic acid) (EcoA) have been prepared by solution blending and accounted for thermal energy storage properties as shape stabilized polymer blends. The blends have been analyzed using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) techniques. Total thermal energy values of the complexes have been determined by the method of Mehling et al. As a result of the investigation it is found that polymers with acid groups form interpolymer complexes (IPCs) and miscible and immiscible IPC–PEG blends when blended with PEGs. PEGs formed IPCs with PAA and EcoA polymers in solutions and reach to saturation and turns to be blends of IPC and PEG polymer. PEGs in this work bleed out of the blends when its compositions reach to a degree of immiscibility. In the first range where blends are IPCs and in the third range where bleeding of PEG occurs, blends are not feasible for thermal energy storage applications. However, in the second range, the blends are potential materials for passive thermal energy storage applications.
  13. Effect of Interferon, Polyacrylic Acid, and Polymethacrylic Acid on Tail Lesions in Mice Infected with Vaccinia Virus Science.gov (United States) De Clercq, E.; De Somer, P. 1968-01-01 Intravenous inoculation of mice with vaccinia virus produced characteristic lesions of the tail surface which were suppressed by intraperitoneal administration of interferon and polyacrylic acid (PAA). Polymethacrylic acid (PMAA) stimulated the formation of vaccinia virus lesions. For full activity, both interferon and PAA must be given prior to infection. PAA was still significantly effective at small dose levels (3 mg/kg) and achieved protection for at least 4 weeks. Protection increased with increasing molecular weight of the polymer. The mode of action of PAA is discussed. PMID:5676405
  14. OH radical induced depolymerization of poly(methacrylic acid) Science.gov (United States) Ulanski, Piotr; Bothe, Eberhard; von Sonntag, Clemens 1999-05-01 Hydroxyl radicals (generated pulse radiolytically in dilute N 2O-saturated aqueous solutions) react with poly(methacrylic acid) producing two kinds of radicals. The primary radical is converted into a secondary one by H-abstraction ( k=3.5 × 10 2 s -1) as monitored by changes in the UV spectrum. Subsequently, the secondary radicals undergo chain scission ( k=1.8 s -1 at pH 7-9). This process has been followed both by spectrophotometry as well as by conductometry. In competition with the bimolecular decay of the radicals the ensuing end-chain radicals undergo efficient depolymerization resulting in the release of monomer. Since the lifetime of the radicals is much longer at high pH, where the polymer attains a rod-like conformation, depolymerization is most efficient in basic solution.
  15. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose. Science.gov (United States) Djerafi, Rania; Swanepoel, Andri; Crampon, Christelle; Kalombo, Lonji; Labuschagne, Philip; Badens, Elisabeth; Masmoudi, Yasmine 2017-05-01 Rifampicin-loaded submicron-sized particles were prepared through supercritical anti-solvent process using ethyl cellulose as polymeric encapsulating excipient. Ethyl acetate and a mixture of ethyl acetate/dimethyl sulfoxide (70/30 and 85/15) were used as solvents for both drug and polymeric excipient. When ethyl acetate was used, rifampicin was crystallized separately without being embedded within the ethyl cellulose matrix while by using the ethyl acetate/dimethyl sulfoxide mixture, reduced crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated. Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose/rifampicin ratio. Results show that the solvent nature and the initial drug concentrations affect morphology and drug precipitation yield of the formulations. In vitro dissolution studies revealed that the release profile of rifampicin was sustained when co-precipitation was carried out with the solvent mixture. It was demonstrated that the drug to polymer ratio influenced amorphous content of the SAS co-precipitates. Differential scanning calorimetry thermograms and infrared spectra revealed that there is neither interaction between rifampicin and the polymer nor degradation of rifampicin during co-precipitation. In addition, stability stress tests on SAS co-precipitates were carried out at 75% relative humidity and room temperature in order to evaluate their physical stability. SAS co-precipitates were X-ray amorphous and remained stable after 6months of storage. The SAS co-precipitation process using a mixture of ethyl acetate/dimethyl sulfoxide demonstrates that this strategy can
  16. Use of polyamfolit complexes of ethyl-amino-crotonate/acrylic acid with surface-active materials for radionuclide extraction International Nuclear Information System (INIS) Kabdyrakova, A.M.; Artem'ev, O.I.; Protskij, A.V.; Bimendina, L.A.; Yashkarova, M.G.; Orazzhanova, L.K. 2005-01-01 Pentifylline of betaine structure was synthesised on the basis of 3-aminocrotonate and acrylic acid. Polyamfolit composition and its complexes with anionic surface-active material (lauryl sulfate of sodium) were determined. It is revealed that complex formation occurs with [polyamfolit]:[surface active material]=1:1 ratio and is accompanied by significant reduce of system characteristics viscosity. The paper presents results of [polyamfolit]:[surface active material] complex apply experimental investigation for radionuclide directed migration in soil. (author)
  17. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives. Science.gov (United States) Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith 2012-11-01 The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  18. UV-crosslinkable photoreactive self-adhesive hydrogels based on acrylics Czech Zbigniew 2016-06-01 Full Text Available Hydrogels are a unique class of macromolecular networks that can hold a large fraction of an aqueous solvent within their structure. They are suitable for biomedical area including controlled drug delivery and for technical applications as self-adhesive materials for bonding of wet surfaces. This paper describes photoreactive self-adhesive hydrogels based on acrylics crosslinked using UV radiation. They are prepared in ethyl acetate through radical polymerization of monomers mixture containing 2-ethylhexyl acrylate (2-EHA, butyl acrylate (BA, acrylic acid (AA and copolymerizable photoinitiator 4-acryloyloxy benzophenone (ABP at presence of radical starter 2.2’-azobis-diisobutyronitrile AIBN. The synthesized acrylic copolymers were determined by viscosity and GPC analysis and later modified using ethoxylated amines. 4-acryloyloxy benzophenone (ABP was used as crosslinking monomer. After UV crosslinking the properties of these novel synthesized hydrogels, such as tack, peel adhesion, shears strength, elongation and water adsorption were also studied.
  19. TEMPLATE POLYMERIZATION OF N-VINYLIMIDAZOLE ALONG POLY(METHACRYLIC ACID) IN WATER .2. KINETICS OF THE TEMPLATE POLYMERIZATION NARCIS (Netherlands) VANDEGRAMPEL, HT; TAN, YY; CHALLA, G 1991-01-01 The template polymerization of N-vinylimidazole (VIm) along poly(methacrylic acid) (PMAA) in water at 50-degrees-C with 2,2'-azobis(2-amidinopropane).2HCl (AAP) as initiator was studied by using variable initiator and monomer concentrations at constant [PMAA]/[VIm]0. From the order in [VIm] it was
  20. Adsorption of polymethacrylic acid from aqueous solutions on disperse titanium dioxide Science.gov (United States) Yaremko, Z. M.; Tkachenko, N. G.; Fedushinskaya, L. B. 2011-10-01 The state of macromolecules of polymethacrylic acid adsorbed on the surface of disperse titanium dioxide was assessed using a combination of the differential concentration approach to the determination of adsorption and methods for determining the size of disperse adsorbents by dynamic light scattering and sedimentation analysis in the field of centrifugal forces. Three sections were found on the isotherm of adsorption: in the first, isolated islands of adsorbed macromolecules formed; in the second, layers of macromolecules with a different degree of deformation were observed; in the third, determining the adsorption of macromolecules is complicated by other accompanying processes, and assessing the state of macromolecules in the adsorption layer becomes difficult.
  1. Preparation and characterization of polyacrylamide-modified kaolinite containing poly [acrylic acid-co-methylene bisacrylamide] nanocomposite hydrogels DEFF Research Database (Denmark) Zaharia, Anamaria; Sarbu, Andrei; Radu, Anita-Laura 2015-01-01 Novel nanocomposite hydrogel structures based on cross-linked poly(acrylic acid) (PAA) and kaolinite (Kaol), modified with different loadings of polyacrylamide (PAAm), were prepared by inverse dispersion polymerization. Ceric ammonium nitrate as an initiator in the presence of nitric acid was used...... of Kaol particles in the polyacrylic acid matrix, thereby leading to enhanced interactions and furthermore to improved mechanical properties of the final hydrogels....
  2. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization Energy Technology Data Exchange (ETDEWEB) Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of); Lim, Yun Kyong; Kook, Joong-Ki [Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Cho, Dong-Lyun [School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju (Korea, Republic of); Kim, Byung Hoon, E-mail: [email protected] [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of) 2010-11-01 Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH{sub 2} of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.
  3. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability Science.gov (United States) Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L. 2016-06-01 Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.
  4. Catalytic acetoxylation of lactic acid to 2-acetoxypropionic acid, en route to acrylic acid NARCIS (Netherlands) Beerthuis, R.; Granollers, M.; Brown, D.R.; Salavagione, H.J.; Rothenberg, G.; Shiju, N.R. 2015-01-01 We present an alternative synthetic route to acrylic acid, starting from the platform chemical lactic acid and using heterogeneous catalysis. To improve selectivity, we designed an indirect dehydration reaction that proceeds via acetoxylation of lactic acid to 2-acetoxypropionic acid. This
  5. Preparation of Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride) by emulsifier-free emulsion polymerization and its interaction with DNA International Nuclear Information System (INIS) Li Xiaolong; Liu Guoqiang; Yan Wei; Chu, Paul K.; Yeung, Kelvin W.K.; Wu Shuilin; Yi Changfeng; Xu Zushun 2012-01-01 Cationic magnetic polymer particles Fe 3 O 4 /poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe 3 O 4 , styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV–vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier. - Highlights: ► A new type of cationic magnetic polymer particles was synthesized by emulsifier-free emulsion polymerization. ► Structural, morphological, and magnetic properties of the composite were evaluated. ► The interaction between cationic magnetic polymer particles with DNA was confirmed by zeta potential measurements. ► UV–vis spectrophotometry, fluorescent spectroscopy and agarose gel electrophoresis. ► This process may have potential applications to gene carrier and DNA separation.
  6. Radiation-induced synthesis and swelling properties of p(2-hydroxyethyl methacrylate-co-itaconic acid-co-oligo(ethylene glycol) acrylate) copolymeric hydrogels International Nuclear Information System (INIS) Micic, M.; Suljovrujic, E. 2011-01-01 Complete text of publication follows. Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers it is possible to prepare P(HEMA-co-IA-co-OEGA) hydrogels with duel (pH and thermo) responsiveness, the main purpose of this paper is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of obtained hydrogels. For that reason, a series of copolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesized by gamma radiation. The obtained hydrogels were characterized by swelling studies in the wide pH (2.2-9.0) and temperature range (25-70 deg C), confirming dual (pH and thermo) responsiveness and a large variation in swelling capability. It was observed that the equilibrium swelling of P(HEMA-co-IA-co-OEGA) hydrogels, for a constant amount of IA, increases progressively with increasing in OEGA share. On the other hand, the dissociation of carboxyl (-COOH) groups from IA occurs at pH > 4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterization of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of the P(HEMA-co-IA-co-OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained copolymeric hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, nucleic acids, peptides, and proteins.
  7. Cation Exchange Efficiency Of Modified Bentonite Using In-Situ GAMMA Radiation Polymerization Of Acrylic Acid Or Acrylamide International Nuclear Information System (INIS) ISMAIL, S.A.; FALAZI, B. 2009-01-01 Modified bentonites as cation exchangers were prepared by treating raw bentonite with 3N NaOH at 95 0 C followed by in-situ polymerization using gamma irradiation as well as hydrogen peroxide initiation of acrylic acid or acrylamide in the matrix.Water swelling and acid capacity were determined and cation exchange capacity for Cu 2+ , Ni 2+ and Co 2+ was evaluated. It has been found that catiexchange capacity of treated bentonite was increased as result of formed polyacrylic acid and polyacrylamide in the matrix. In case of acrylic acid, the maximum cation exchange capacities of 3.5, 3.1 and 2.5 mg equivalent/g were determined for Cu 2+ , Ni 2+ and Co 2+ , respectively, and for acrylamide, the corresponding capacities were 2.9, 2.8 and 2.6 mg equivalent/g, respectively. Water swelling was found to be associated with holding large amounts of water, for instance, 49 g of water was sorbed per one gram of the sodium salt form of polyacrylic acid in bentonite matrix, in other words the degree of swelling in water achieved 4500%.
  8. Synthesis and characterization of acrylated Parkia biglobosa ... African Journals Online (AJOL) The results revealed that acid functional acrylic copolymers containing maleic anhydride as a functional co-monomer can successfully be used to modify alkyd resins yielding acrylated resins with better drying, flexibility, scratch hardness, impact resistance and chemical resistance properties. However there exist optimum ...
  9. Synthesis and characterization of acrylated Parkia biglobosa medium oil alkyds E.T. Akintayo 2004-12-01 Full Text Available Acrylated Parkia biglobosa medium oil alkyd prepared by the reaction between an acid containing acrylic copolymer and a monoglyceride followed by the addition of polyol and dibasic acid has been investigated for improved properties. The results revealed that acid functional acrylic copolymers containing maleic anhydride as a functional co-monomer can successfully be used to modify alkyd resins yielding acrylated resins with better drying, flexibility, scratch hardness, impact resistance and chemical resistance properties. However there exist optimum levels for modification of alkyds with such copolymers beyond which certain film properties are adversely affected.
  10. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate (PMEA Analogous Polymers for Attachment-Based Cell Enrichment. Takashi Hoshiba Full Text Available Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate (PMEA substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate (PBA and poly(tetrahydrofurfuryl acrylate (PTHFA, on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe2A and poly(2-(2-methoxyethoxy ethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe3A, which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment.
  11. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance. Science.gov (United States) Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin 2015-01-01 Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.
  12. SYNTHESIS OF FATTY ACID ETHYL ESTER FROM CHICKEN FAT ... African Journals Online (AJOL) eobe synthesis of fatty acid ethyl ester from chicken fat waste using ZnO/SiO fatty acid ethyl ester ... obtained in the range of 56−88%and a second order quadratic polynomial regression model that established the ... Transesterification is a chemical.
  13. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications Czech Academy of Sciences Publication Activity Database Šafařík, Ivo; Štěpánek, M.; Uchman, M.; Šlouf, Miroslav; Baldíková, E.; Nýdlová, L.; Pospíšková, K.; Šafaříková, Miroslava 2016-01-01 Roč. 67, October (2016), s. 486-492 ISSN 0928-4931 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Institutional support: RVO:60077344 ; RVO:61389013 Keywords : chitosan * immobilization * lipase * magnetic fluid * poly(methacrylic acid) Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 4.164, year: 2016
  14. Radiolytic Synthesis of Pt-Ru Catalysts Based on Functional Polymer-Grafted MWNT and Their Catalytic Efficiency for CO and MeOH Dae-Soo Yang 2011-01-01 Full Text Available Pt-Ru catalysts based on functional polymer-grafted MWNT (Pt-Ru@FP-MWNT were prepared by radiolytic deposition of Pt-Ru nanoparticles on functional polymer-grafted multiwalled carbon nanotube (FP-MWNT. Three different types of functional polymers, poly(acrylic acid (PAAc, poly(methacrylic acid (PMAc, and poly(vinylphenyl boronic acid (PVPBAc, were grafted on the MWNT surface by radiation-induced graft polymerization (RIGP. Then, Pt-Ru nanoparticles were deposited onto the FP-MWNT supports by the reduction of metal ions using γ-irradiation to obtain Pt-Ru@FP-MWNT catalysts. The Pt-Ru@FP-MWNT catalysts were then characterized by XRD, XPS, TEM ,and elemental analysis. The catalytic efficiency of Pt-Ru@FP-MWNT catalyst was examined for CO stripping and MeOH oxidation for use in a direct methanol fuel cell (DMFC. The Pt-Ru@PVPBAc-MWNT catalyst shows enhanced activity for electro-oxidation of CO and MeOH oxidation over that of the commercial E-TEK catalyst.
  15. Studies on protein synthesis by protoplasts of Saccharomyces carlsbergensis II. Reversal of the RNase effect of protein synthesis by polymethacrylic acid NARCIS (Netherlands) Kloet, S.R. de; Wermeskerken, R.K.A. van; Koningsberger, V.V. 1961-01-01 The ribonuclease inhibited protein synthesis and respiration of yeast protoplasts can be restored by the addition of several polyanionic compounds, among which polymethacrylic acid proved to be the most effective one. The results of preliminary experiments with the ultracentrifuge indicate a
  16. Antimicrobial and Thermal Properties of Metal Complexes of Grafted Fabrics with Acrylic Acid by Gamma Irradiation International Nuclear Information System (INIS) Hassan, M.S.; Attia, R.M.; Zohdy, M.H. 2008-01-01 Cotton, cotton/PET blend and PET fabrics were treated against microbial effect by radiation - induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions Co (II), Ni (II) and Cu (II). The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the growth of microorganisms was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behavior was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the antimicrobial resistance of the fabrics and the antimicrobial resistance could be arranged according to the metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexed with Cu (II) > grafted fabrics complexed with Ni (II) > grafted fabrics complexed with Co (II)
  17. Precise Measurement of Refractive Index and Absorption Coefficient of Near Millimeter Wave and Far Infrared Materials. Science.gov (United States) 1987-06-01 polyethylene. The plexiglass is a polymethyl methacrylate and the acrylic is a polymethacrylate . The polyamide(nylon) is made with adipic acid and hexamethylene...are made with acrylic acid . It was not sur- prizing to see both exhibiting similar absorption characteristics atleast 30 times higher than
  18. A comparative study of thermal and mechanical stabilities of gamma irradiated ethylene-ethyl acrylate and ethylene-vinyl acetate copolymers International Nuclear Information System (INIS) Sen, M.; Gueven, O. 1995-01-01 Ethylene-ethyl acrylate and Ethylene-vinyl acetate copolymers were irradiated in ambient conditions with γ-rays. The influence of the chain scission, crosslinking and relative changes in crystallinity on the thermal and mechanical properties were investigated and a correlation has been tried to find between the thermal and mechanical stabilities of copolymers. For the two copolymers, among various mechanical properties evaluated, the best correlation was found between the toughness (energy to break point) and the time required for 10% weight loss. (Author)
  19. Use of Acrylic Acid Sodium Acrylate Polymer to Maintain Cocoa Seed Viability Pudji Rahardjo 2010-08-01 Full Text Available The main problem of cocoa seed storage is moisture content of the seeds because cocoa seeds will germinate if cocoa seeds moisture content is high. The objective of this research is to maintain the cocoa seeds viability in storage using acrylic acid sodium acrylate polymer (AASAP. The function of AASAP is to absorb humidity in storage due to their ability to retain water and to prevent water loss. The experiment was conducted in a laboratory of Indonesian Coffee and Cocoa Research Institute and in Kaliwining Experimental Garden. This experiment was arranged by factorial randomized complete design, in wich AASAP dosages 0%; 0.1% (0.1 g/100 seeds; 0.2% (0.2 g/100 seeds, 0.3% (0.3 g/100 seeds, 0,4% (0,4g/100 seeds, combined with seeds storage period 1, 2, 3 and 4 weeks. The experiment used 3 replications and each repli cation used 100 seeds. Parameter of observation consisted of percentage of seeds germinated in storage, percentage of seeds infected by fungi in storage, seeds moisture content, percentage of seeds germination after storage, and early growth of cocoa seedlings. The results of the experiment showed that AASAP application with some dosages cocoa seeds storage cause to germinate in storage during 2 weeks. AASAP application with some dosages in cocoa seeds storage for 2 weeks would not result in infection by fungi and did not significantly affect seed germination after storage for 1, 2 and 4 weeks, and percentage of germination of cocoa seed after storage for 3 weeks decreased with increase dosage of AASAP. Higher dosage of AASAP would reduce early growth of cocoa seedling. Key words : Theobroma cacao, seed, acrylic acid sodium acrylate, seed storage, viabilty.
  20. Acrylic acid surface-modified contact lens for the culture of limbal stem cells. Science.gov (United States) Zhang, Hong; Brown, Karl David; Lowe, Sue Peng; Liu, Guei-Sheung; Steele, David; Abberton, Keren; Daniell, Mark 2014-06-01 Surface treatment to a biomaterial surface has been shown to modify and help cell growth. Our aim was to determine the best surface-modified system for the treatment of limbal stem cell deficiency (LSCD), which would facilitate expansion of autologous limbal epithelial cells, while maintaining cultivated epithelial cells in a less differentiated state. Commercially available contact lenses (CLs) were variously surface modified by plasma polymerization with ratios of acrylic acid to octadiene tested at 100% acrylic acid, 50:50% acrylic acid:octadiene, and 100% octadiene to produce high-, mid-, and no-acid. X-ray photoelectron spectroscopy was used to analyze the chemical composition of the plasma polymer deposited layer. Limbal explants cultured on high acid-modified CLs outgrew more cells. Immunofluorescence and RT2-PCR array results indicated that a higher acrylic acid content can also help maintain progenitor cells during ex vivo expansion of epithelial cells. This study provides the first evidence for the ability of high acid-modified CLs to preserve the stemness and to be used as substrates for the culture of limbal cells in the treatment of LSCD.
  1. Decarboxylation-based traceless linking with aroyl acrylic acids DEFF Research Database (Denmark) Nielsen, John 1998-01-01 beta-Keto carboxylic acids are known to decarboxylate readily. In our pursuit to synthesize beta-indolinyl propiophenones, we have exploited this chemistry as a mean of establishing a traceless handle. 2-Aroyl acrylic acids have been esterified to a trityl resin, after which Michael-type addition...
  2. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides DEFF Research Database (Denmark) Shunmugavel, Saravanamurugan; Riisager, Anders 2012-01-01 Sulfonic acid functionalised SBA-15 (SO3H-SBA-15), sulfated zirconia and beta, Y, ZSM-5 and mordenite zeolite catalysts have been applied for the dehydration of sugars to ethyl levulinate and ethyl-D-glucopyranoside (EDGP) using ethanol as solvent and reactant. The SO3H-SBA-15 catalyst showed...
  3. Effect of synthesis parameters on polymethacrylic acid xerogel structures and equilibrium swelling Science.gov (United States) Panić, V.; Jovanović, J.; Adnadjević, B.; Velicković, S. 2009-09-01 Hydrogels based on crosslinked polymethacrylic acid were synthesized via free-radical polymerization in aqueous solution, using N,N'-methylene bisacrylamide as a crosslinking agent and 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride as an initiator. The influence of the reaction parameters (the neutralization degree of methacrylic acid and the initial monomer concentration) on the equilibrium swelling degree, the swelling kinetic parameters and the basic structural properties of xerogels was investigated. The change of synthesis parameters leads to the change of the basic structural parameters of xerogel, as well as the equilibrium swelling degree and the initial swelling rate of the hydrogels. It is found that there are power form relationships between the equilibrium swelling degree, the initial swelling rate and the structural xerogel’s properties and the change of the neutralization degree of monomer, i.e. the monomer concentration. The examined correlations proved that the crosslinking density is the crucial parameter which determines all the other investigated structural and swelling parameters.
  4. Radiation synthesis of nanosilver nanohydrogels of poly(methacrylic acid) International Nuclear Information System (INIS) Gupta, Bhuvanesh; Gautam, Deepti; Anjum, Sadiya; Saxena, Shalini; Kapil, Arti 2013-01-01 Nanosilver nanohydrogels (nSnH) of poly(methacrylic acid) were synthesized and stabilized using gamma irradiation. The main objective of this study was to develop silver nanoparticles and to evaluate the antimicrobial activity. Radiation helps in the polymerization, crosslinking and reduction of silver nitrate as well. Highly stable and uniformly distributed silver nanoparticles have been obtained within hydrogel network by water in oil nanoemulsion polymerization and were evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) respectively. TEM showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network. The mean size of silver nanoparticles ranging is 10–50 nm. The nanohydrogels showed good swelling in water. Antibacterial studies of nSnH suggest that it can be a good candidate as coating material in biomedical applications. - Highlights: • Nanosilver nanohydrogels of PMAA were synthesized and stabilized using Υ-irradiation. • The mean size of silver nanoparticles ranging is 10–50 nm. • Antibacterial studies of nSnH suggest it to be a good candidate for biomedical applications
  5. Fluorimetric study of the mechanism of molecular association in aqueous solutions of polymethacrylic acid and sodium dodecylbenzenesulfonate Science.gov (United States) Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S. 2013-03-01 Fluorescent spectroscopy is used to investigate the processes of intermolecular association in mixed solutions of polymethacrylic acid (PMAA) and anionic sodium dodecylbenzenesulfonate (SDBS). We propose a model for describing the stage-by-stage mechanism of association processes and conclude that the nature of intermolecular associates depends on the PMAA-SDBS concentration ratio in the solution. Studying the kinetics of fluorescence decay reveals the simultaneous existence of two types of formations capable of pyrene solubilization.
  6. Preparation of Fe{sub 3}O{sub 4}/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride) by emulsifier-free emulsion polymerization and its interaction with DNA Energy Technology Data Exchange (ETDEWEB) Li Xiaolong; Liu Guoqiang; Yan Wei [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam (Hong Kong); Wu Shuilin; Yi Changfeng [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Division of Spine Surgery, Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam (Hong Kong); Xu Zushun, E-mail: [email protected] [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Division of Spine Surgery, Department of Orthopaedics and Traumatology, University of Hong Kong, Pokfulam (Hong Kong) 2012-04-15 Cationic magnetic polymer particles Fe{sub 3}O{sub 4}/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe{sub 3}O{sub 4}, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier. - Highlights: Black-Right-Pointing-Pointer A new type of cationic magnetic polymer particles was synthesized by emulsifier-free emulsion polymerization. Black-Right-Pointing-Pointer Structural, morphological, and magnetic properties of the composite were evaluated. Black-Right-Pointing-Pointer The interaction between cationic magnetic polymer particles with DNA was confirmed by zeta potential measurements. Black-Right-Pointing-Pointer UV-vis spectrophotometry, fluorescent spectroscopy and agarose gel electrophoresis. Black-Right-Pointing-Pointer This process may have potential applications to gene carrier and DNA separation.
  7. Antimicrobial and thermal properties of metal complexes of grafted fabrics with acrylic acid by gamma irradiation International Nuclear Information System (INIS) Hassan, M.S.; Attia, R.M.; Zohdy, M.H.; Khalil, E.M. 2009-01-01 Cotton, cotton/ ET blend and PET fabrics were treated against microbial effect by radiation -induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions like Co (l l), Ni(l l) and Cu(l l).The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the structural damage of the fabrics caused by biodegradation was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behaviour was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the microbial resistance of the fabrics and the microbial resistance could be arranged according to the complexed metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexes with Cu (l l) grafted fabrics complexes with Co (l l)
  8. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid in the Presence of Copper (II Nabila Bensacia 2015-01-01 Full Text Available Potentiometric titration of poly(acrylic acid and hydroquinone-functionalized poly(acrylic acid was conducted in the presence of copper (II. The effects of hydroquinone functionalizing and copper (II complexing on the potentiometric titration of poly(acrylic acid were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-complexed polymers were determined, and results showed the formation of mostly monodentate and bidentate copper- (II-polymer complexes.
  9. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents Science.gov (United States) Sütekin, S. Duygu; Güven, Olgun 2018-01-01 The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.
  10. Resonance light scattering technique for the determination of proteins with polymethacrylic acid (PMAA) Science.gov (United States) Chen, Yanhua; Gao, Dejiang; Tian, Yuan; Ai, Peng; Zhang, Hanqi; Yu, Aimin 2007-07-01 As a resonance light scattering (RLS) probe, the polyelectrolyte polymethacrylic acid (PMAA) was applied in this assay. The bovine serum albumin (BSA) and human serum albumin (HSA) were determined by the electrostatic interaction of PMAA and proteins. At pH 3.8 Na 2HPO 4-citric acid buffer solution, the RLS intensities of PMAA-BSA (HSA) system were greatly enhanced. The characteristic peaks were appeared at the wavelength 320, 546 and 594 nm. The optimization conditions of the reaction were also examined and selected. Under the selected conditions, the RLS intensities were proportional to the protein concentrations in the range of (0.0200-2.00) × 10 -6 mol/L for BSA and (0.0200-2.40) × 10 -6 mol/L for HSA. The influences of some foreign substances were also examined. The synthetic samples containing proteins and some real samples were analyzed and the results obtained were satisfactory.
  11. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer. Science.gov (United States) Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib 2017-04-01 Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model. Copyright © 2017 Elsevier B.V. All rights reserved.
  12. A study of extraction of oil through a polymer flooding method Energy Technology Data Exchange (ETDEWEB) Aliyev, V.S.; Agazade, A.D.; Asadov, Z.G.; Yusubov, A.Yu. 1983-01-01 A number of representatives of water soluble acrylic polymers is synthesized. These include polyacrylamine (PAA), methylated polyacrylamine, polymethacrylic acid (PMAK) and its alkaline salts. The oil extracting properties of the synthesized polymers are studied in a laboratory installation. The effectiveness for extracting Romaninsk oil of solutions of polyacrylamine, methylated polyacrylamine and polymethacrylic acid in alkaline stratum water (the effect is 12 to 17 percent) is shown. It is established that the solutions of alkaline (sodium, potassium, and ammonium) salts of polymethacrylic acid in fresh water have good extracting capabilities as compared to light Balakhansk oil. The effect is 14 to 19 percent.
  13. Synthesis of water-soluble poly [acrylic acid-co-vinyl butyl ether] and its applications in cement admixtures International Nuclear Information System (INIS) Negim, S.M.; Mun, G.A.; Nurkeeva, Z.S.; Danveesh, H.H.M. 2005-01-01 Three composition ratios of poly[acrylic acid (AA)-co-vinyl butyl ether)] were prepared in alcoholic solution using azo-bis-isobutyro-nitrile as initiator (ABIN). The water-soluble copolymers were characterized through FT-IR, 1 H NMR, Mass spectra, ESEM as well as viscosity. The effect of water-soluble copolymers and their sodium salts on the physico-mechanical properties of Ordaniary Portland Cement (O.P.C) pastes was investigated. The results showed that the addition of aqueous solutions from the prepared copolymers and their sodium salts to the cement improve most of the specific characteristics of (O.P.C). As the concentration of the water-soluble copolymer increases, the setting time increases. The combined water content enhances the addition of copolymer to the mixing water. The compressive strength was she increased at all any hydration. The results of the solution of the prepared sodium salt copolymers are better than its copolymers. (author)
  14. Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers: Pt. 2 International Nuclear Information System (INIS) Abdel-Ghaffar, M.; Hegazy, E.A.; Dessouki, A.M.; El-Sawy, N.M.; El-Assy, N.B. 1991-01-01 Radiation induced grafting of acrylic acid onto poly (tetrafluoroethylene-perfluorovinyl ether) (PFA) films was investigated. The grafted films rapidly absorbed Fe 3+ , Co 2+ , Ni 2+ , and Cu 2+ ions in high efficiency. The polyacrylic acid grafted onto PFA acted as a chelating site for the previously selected transition metal ions. Such prepared copolymer-metal complexes were confirmed spectrophotometrically via IR, UV-spectrometry, X-ray fluorescence, X-ray diffraction, and colour index measurements. Electrical conductivity and mechanical properties of PFA grafted copolymer-metal complexes were investigated. The applications of such prepared copolymer-metal complexes in the field of semiconductors besides its performance as a cation-exchange membrane may be of great interest. (author)
  15. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose. Science.gov (United States) Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A 2016-10-01 Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.
  16. Poly(methacrylic acid)-mediated morphosynthesis of PbWO4 micro-crystals International Nuclear Information System (INIS) Yu, J.G.; Zhao, X.F.; Liu, S.W.; Li, M.; Mann, S.; Ng, D.H.L. 2007-01-01 PbWO 4 crystals with various morphologies were fabricated via a facile poly(methacrylic acid)-mediated hydrothermal route. Novel microsized PbWO 4 single crystals with a needle-like shape as well as other morphologies, such as a fishbone, dendrite, sphere, spindle, ellipsoid, rod, and dumbbell with two dandelion-like heads, could be produced. The presence of PMAA, [Pb 2+ ]/[WO 4 2- ] molar ratio (R), and aging temperature played key roles in the formation of the PbWO 4 needle-like structures. Between temperatures of 60 to 150 C, the length and photoluminescence intensities of the PbWO 4 micro needles significantly increased with aging temperature, while the diameter did not change remarkably. Time-dependent experiments revealed that the formation of PbWO 4 microneedles involved an unusual growth process, involving nucleation, oriented assembly and controlled mesoscale restructuring of nanoparticle building blocks. (orig.)
  17. Starch-g-Poly-(N, N-dimethyl acrylamide-co-acrylic acid): an efficient Cr (VI) ion binder. Science.gov (United States) Kolya, Haradhan; Roy, Anirban; Tripathy, Tridib 2015-01-01 Synthesis of Starch-g-(Poly N, N-dimethylacrylamide-co-acrylic acid) was carried out by solution polymerization technique using potassium perdisulfate (K(2)S(2)O(8)) as the initiator. The graft copolymer was characterized by measuring molecular weight, using size exclusion chromatography (SEC), FTIR spectroscopy and X-ray diffraction (XRD) studies. The synthetic graft copolymer was used for removal of hexavalent chromium ion [Cr (VI)] from its aqueous solution. Various operating variables affecting the metal sorption such as, the amount of adsorbent, solution pH, contact time, temperature and the Cr (VI) solution concentration were extensively investigated. FTIR and UV-VIS spectroscopy, cyclic voltammetry (CV) were employed to study the metal complexation. The adsorption data could be well described by the pseudo-second-order and Langmuir isotherm model which indicate a chemisorption process. Calculation of the various thermodynamic parameters for the adsorption was also done. The negative value of free energy change (ΔG°) indicates the spontaneous nature of the adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.
  18. The evaluation of temperature and pH influences on equilibrium swelling of poly(n-isopropylacrylamide-co-acrylic acid hydrogels Zdravković Aleksandar S. 2017-01-01 Full Text Available Hydrogels are synthesized by the method of radical polymerization of monomers: N-isopropylacrylamide (NIPAM and acrylic acid (AA. Characterization of poly(N-isopropylacrylamide- co-acrylic acid hydrogels, p(NIPAM/AA, has been performed by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and by determination of the swelling behaviour in aqueous solutions at different temperatures (25, 31 and 37°C and pH values (2.2, 4.5, 6 and 6.8. After lyophilisation in the solution at pH 6 and temperature of 25°C, p(NIPAM/AA hydrogels have rapidly reached equilibrium degree of swelling, αe, in comparison to non-lyophilized samples. The mechanism of solvent transport within matrix in lyophilized samples corresponds to less Fickian diffusion, whereas Super case II diffusion is characteristic for non-lyophilized samples. p(NIPAM/AA hydrogel with 1.5 mol% of ethylene glycol dimethacrylate (EGDM at the temperature of 25°C and pH 6.8, has reached the highest swelling equilibrium degree, αe = 259.8. The results of swelling studies have shown that p(NIPAM/AA hydrogels can be classified as superabsorbent polymers (SAPs. For the evaluation of pH and temperature influences on synthesized hydrogels swelling, a full three-level experimental design has been used. Two-factor interaction model (2FI is the most optimal model of a full three-level experimental design for representing the swelling equilibrium degree of p(NIPAM/AA hydrogels as a function of investigated parameters, i.e., temperature and pH. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-34012
  19. Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption. Science.gov (United States) Chen, Qing; Yu, Haojie; Wang, Li; Abdin, Zain-Ul; Yang, Xinpeng; Wang, Junhua; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao 2016-11-20 Amylose grafted poly(acrylic acid) (Am-g-PAA) was synthesized by graft copolymerization of amylose with acrylic acid. The structure of Am-g-PAA was confirmed by (1)H NMR and FT-IR spectra. The morphology, crystallinity and thermal properties of amylose and Am-g-PAA were investigated by SEM, XRD and TGA, respectively. The highest degree of substitution (DS) of carboxyl group was 1.96 which was obtained after reacted for 1h at 60°C. Acrylic acid to anhydroglucose mole ratio for DS was 19.81. It was found that a large number of carboxyl groups were grafted on the backbone of amylose. It was also found that ammonia adsorption capacity of amylose increased by grafting poly(acrylic acid) on the backbone of amylose. Copyright © 2016 Elsevier Ltd. All rights reserved.
  20. Lower critical solution temperature behavior of alpha-substituted poly(acrylic acids)s, cyclopolymerization of N-vinylformamido-methylacrylates, and use of the World-Wide Web in polymer science education Science.gov (United States) Michalovic, Mark Stephen A series of alpha-substituted poly(acrylic acid)s was synthesized and characterized. Their aqueous solution properties were investigated with respect to lower critical solution temperature (LCST) behavior. Poly(alpha-methoxymethylacrylic acid) was found to have a lower critical solution temperature (LCST) of 46°C, poly(alpha-methoxyethoxymethylacrylic acid) showed an LCST of 26.5°C and poly(alpha-methoxyethoxyethoxymethylacrylic acid) showed an LCST of 66°C. The cloud points of the solutions of these polymers were found to be sensitive to pH, and to concentrations of additives such as urea, salts, and surfactants. Because of low molecular weight due to chain transfer, high molecular weight analogs of the ether-linked polymers were synthesized in which ester linkages joined the oligo-oxyethylene segment to the acrylate moiety. Poly(alpha-methoxyethoxyacetoxymethylacrylic acid) was the only one of this series to give an LCST with a value of 52.5°C. Copolymers of t-butyl alpha-methoxymethylacrylate (tBMMA) with alpha-(1H,1H- perfluorooctyloxymethyl)acrylic acid (PFOMA) were synthesized, deprotected and their lower critical solution temperatures (LCSTs) evaluated. At PFOMA feed ratios of 0.25 mol % or less, no observable change in the LCST was observed, while at PFOMA feed ratios of above 0.25 mol % to 1.125 mol %, a large linear decrease in the LCST was observed with increasing fluorocarbon content. t-Butyl alpha-(N-vinylformamidomethyl)acrylate (tBVFA) and ethyl alpha-(N-vinylformamidomethyl)acrylate (EVFA) were synthesized from t-butyl alpha-bromomethylacrylate and ethyl alpha-chloromethylacrylate, respectively. tBVFA was found to cyclopolymerize at 120°C in DMF, DMSO, and 1,2-dichlorobenzene at solvent:monomer ratios of 10:1 vol:wt. Molecular weights for poly(tBVFA) ranged from 10,000 to 13,000 as estimated by size-exclusion chromatography. At lower solvent monomer ratio (1:1), and at lower temperature (71°C), crosslinking occurred. EVFA was found to
  1. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid)/Kaolin Composite Superabsorbents OpenAIRE Koroush Kabiri; Siavash Nafisi; Mohammad jalaledin Zohuriaan-Mehr; Ali Akbar Yousefi 2013-01-01 Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5%) was due to polyethylene glycol diacrylate 1000 (PEGDA-1000). Then, kaolin-containing poly(potassium acrylate-acrylic acid) superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated...
  2. Poly (ethylene oxide)-block-poly (n-butyl acrylate)-blockpoly (acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties OpenAIRE Petrov, P. (Petar); Yoncheva, K. (Krassimira); Mokreva, P. (Pavlina); Konstantinov, S. (Spiro); Irache, J.M. (Juan Manuel); Müller, A.H.E. (Axel H.E.) 2013-01-01 The synthesis and aggregation behaviour in aqueous media of novel amphiphilic poly(ethylene oxide)- block-poly(n-butyl acrylate)-block-poly(acrylic acid) (PEO–PnBA–PAA) triblock terpolymers were studied. Terpolymers composed of two highly asymmetric hydrophilic PEO (113 monomer units) and PAA (10–17 units) blocks, and a longer soft hydrophobic PnBA block (163 or 223 units) were synthesized by atom transfer radical polymerisation (ATRP) of n-butyl acrylate and tert-butyl acrylate ...
  3. Preparation and Property of Acrylic Acid Rare Earth Complex and Its Hydrosilylation Institute of Scientific and Technical Information of China (English) Zhang Ming; Chen Haiyan; Chen Xiaosong; Dai Shaojun; Inoue Shinich; Okamoto Hiroshi 2004-01-01 Acrylic acid rare earth complex was prepared. Its chemical composition was determined by chemical and elemental analysis, and its structure as well as properties was characterized using IR, Fluorescence and UV spectrum, and its solubility was also investigated. Meanwhile a kind of elastic functional polymer with rare earth units in the side chains was produced. It is confirmed by IR spectrum that the Si-H bonds really react with acrylic acid rare earth.
  4. Morphology and thermodynamic characteristics of selenium-containing nanostructures based on polymethacrylic acid Science.gov (United States) Valueva, S. V.; Borovikova, L. N.; Vylegzhanina, M. E.; Sukhanova, T. E. 2010-09-01 The morphology and thermodynamic characteristics of nanostructures formed as a result of the reduction of the selenium ion in a selenite-ascorbate redox system in water solutions of polymethacrylic acid were studied by molecular optics and atomic-force microscopy. The dependence of the morphology of the selenium-containing nanostructures on the mass selenium-to-polymer ratio (ν) in solution was determined. It was established that a large number of macromolecules (up to 4300) is adsorbed on the selenium nanoparticles, leading to the formation of nanostructures with super-high molecular mass and an almost spherical form. It was shown that the density of the nanostructures, as calculated on the basis of the experimental data on the size and molecular mass of the nanocomposite, depends substantially on the selenium concentrations in the solution. The thermodynamic state of the solutions of nanostructures is described.
  5. Preparation by Poly(Acrylic Acid) Sol-Gel Method and Thermoelectric Properties of γ-Na x CoO2 Bulk Materials Science.gov (United States) Li, Xiaoyu; Zhang, Li; Tang, Xinfeng 2017-11-01 γ-Na x CoO2 single-phase powders have been synthesized by a poly(acrylic acid) (PAA) sol-gel (SG) method, and γ-Na x CoO2 bulk ceramic fabricated using spark plasma sintering. The effects of the PAA concentration on the sample phase composition and morphology were investigated. The thermoelectric properties of the γ-Na x CoO2 bulk ceramic were also studied. The results show that the PAA concentration did not significantly affect the crystalline phase of the product. However, agglomeration of γ-Na x CoO2 crystals was suppressed by the steric effect of PAA. The Na x CoO2 bulk ceramic obtained using the PAA SG method had higher crystallographic anisotropy, better chemical homogeneity, and higher density than the sample obtained by solid-state reaction (SSR), leading to improved thermoelectric performance. The PAA SG sample had power factor (in-plane PF = σS 2) of 0.61 mW m-1 K-2 and dimensionless figure of merit ( ZT) along the in-plane direction of 0.19 at 900 K, higher than for the SSR sample (in-plane PF = 0.51 mW m-1 K-2, in-plane ZT = 0.17). These results demonstrate that a simple and feasible PAA SG method can be used for synthesis of Na x CoO2 ceramics with improved thermoelectric properties.
  6. Methacrylate and acrylate allergy in dental personnel. Science.gov (United States) Aalto-Korte, Kristiina; Alanko, Kristiina; Kuuliala, Outi; Jolanki, Riitta 2007-11-01 Methacrylates are important allergens in dentistry. The study aimed to analyse patch test reactivity to 36 acrylic monomers in dental personnel in relation to exposure. We reviewed the test files at the Finnish Institute of Occupational Health from 1994 to 2006 for allergic reactions to acrylic monomers in dental personnel and analysed the clinical records of the sensitized patients. 32 patients had allergic reactions to acrylic monomers: 15 dental nurses, 9 dentists, and 8 dental technicians. The dentists and dental nurses were most commonly exposed to 2-hydroxyethyl methacrylate (2-HEMA), triethyleneglycol dimethacrylate (TREGDMA), and 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA). 8 dentists and 12 dental nurses were allergic to 2-HEMA. The remaining dentist was positive to bis-GMA and other epoxy acrylates. The remaining 3 dental nurses reacted to diethyleneglycol diacrylate (DEGDA) or triethyleneglycol diacrylate (TREGDA), but not to monofunctional and multifunctional methacrylates. Our dental technicians were mainly exposed and sensitized to methyl methacrylate (MMA) and ethyleneglycol dimethacrylate (EGDMA). 1 technician reacted only to 2-HEMA, and another to ethyl methacrylate (EMA) and ethyl acrylate (EA). 2-HEMA was the most important allergen in dentists and dental nurses, and MMA and EGDMA in dental technicians. Reactions to bis-GMA, DEGDA, TREGDA, EMA and EA were relevant in some patients.
  7. Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) graft copolymer templated synthesis of mesoporous TiO{sub 2} thin films for quasi-solid-state dye sensitized solar cells Energy Technology Data Exchange (ETDEWEB) Patel, Rajkumar; Jung, Ye Eun; Kim, Dong Jun; Kim, Sang Jin; Kim, Jong Hak, E-mail: [email protected] 2014-02-03 An amphiphilic graft copolymer, poly(ethylene-co-acrylic acid)-graft-poly(ethylene glycol) (PEAA-g-PEG), consisting of a PEAA backbone and PEG side chains was synthesized via an esterification reaction. {sup 1}H nuclear magnetic resonance and Fourier-transformed infrared analysis demonstrated esterification between carboxylic acid of PEAA and hydroxyl group of PEG. Small angle X-ray scattering results revealed that the crystalline domain spacing of PEAA increased from 11.3 to 12.8 nm upon using a more polar solvent with a higher affinity for poly(acrylic acid), while the crystalline domain spacing of PEAA disappeared with PEG grafting, indicating structural change to an amorphous state. Mesoporous TiO{sub 2} thin films were synthesized via a sol–gel reaction using PEAA-g-PEG graft copolymer as a structure-directing agent. The hydrophilically-preformed TiO{sub 2} nanoparticles were selectively confined in the hydrophilic PEG domains of the graft copolymer, and mesoporous TiO{sub 2} thin films were formed, as confirmed by scanning electron microscopy. The morphology of TiO{sub 2} films was tunable by varying the concentrations of polymer solutions and the amount of preformed TiO{sub 2}. A quasi-solid-state dye-sensitized solar cell fabricated with PEAA-g-PEG templated TiO{sub 2} film exhibited an energy conversion efficiency of 3.8% at 100 mW/cm{sup 2}, which was greater than that of commercially-available paste (2.6%) at a similar film thickness (3 μm). The improved performance was due to the larger surface area for high dye loading and organized structure with good interconnectivity. - Highlights: • Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) (PEAA-g-PEG) graft copolymer is synthesized. • Amphiphilic PEAA-g-PEG acts as a structure directing agent. • Mesoporous TiO{sub 2} thin films are prepared by sol–gel reaction using PEAA-g-PEG template. • Efficiency of DSSC with templated TiO{sub 2} is greater than with commercial TiO{sub 2} paste.
  8. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications. Science.gov (United States) Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E 2016-01-01 In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days. Copyright © 2015 Elsevier B.V. All rights reserved.
  9. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer. Science.gov (United States) Abdel-Halim, E S 2012-10-01 Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.
  10. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids International Nuclear Information System (INIS) Lee, Yong Hwa; Lee, Woo Youn; Kim, Ki-Sub; Hong, Yeon Ki 2014-01-01 As an effective method for extraction of acrylic acid, aqueous two-phase systems based on morpholinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in morpholinium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of morpholinium ionic liquids to aqueous K 2 HPO 4 solutions. It can be found that the ability of morpholinium ionic liquids for phase separation followed the order [HMMor][Br]>[OMMor][Br]>[BMMor][Br]>[EMMor][Br]. There was little difference between binodal curves of imidazolium ionic liquids and those of morpholinium ionic liquids. 50-90% of the extraction efficiency was observed for acrylic acid by aqueous two phase extraction of acrylic acid with morpholinium ionic liquids. It can be concluded that morpholinium ionic liquids/K 2 HPO 4 were effective for aqueous two phases extraction of acrylic acid comparing to imidazolium ionic liquids/K 2 HPO 4 systems because of their lower cost
  11. Radiolysis of poly(acrylic acid) in aqueous solution Science.gov (United States) Ulanski, Piotr; Bothe, Eberhard; Hildenbrand, Knut; Rosiak, Janusz M.; von Sonntag, Clemens 1995-02-01 Poly(acrylic acid), PAA, reacts with OH-radicals yielding -CHCH(CO 2H)- (β-radicals) and -CH 2C(CO 2H)- (α-radicals) in a ratio of approximately 2:1. This estimate is based on pulse radiolysis data where the absorption spectrum of the PAA-radicals was compared with the spectra of α-radicals from model systems. The β-radicals convert slowly into α-radicals ( k = 0.7 s -1 at pH 10). This process has also been observed by ESR. At PAA-concentrations of 10 -2 mol dm -3 chain scission dominates over other competing reactions except at low pH. The rate of chain scission was followed by pulse conductometry and in the pH range 7-9 k = 4 × 10 -2s -1 was observed. Oxygen reacts with PAA-radicals with k = 3.1 × 10 8 dm 3 mol -1 s -1 at pH 3.5 and k = 1.0 × 10 8 dm 3 mol -1 s -1 at pH 10. The corresponding peroxyl radicals undergo slow intramolecular H-transfer yielding a UV-absorbing product whose properties are that of 1,3-diketones.
  12. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones KAUST Repository Bruckmeier, Christian 2010-05-24 The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β-hydride elimination and the liberation of the acrylate species. © 2010 American Chemical Society.
  13. Time-resolved fluorescence of cationic dyes covalently bound to poly(methacrylic acid) in rigid media Energy Technology Data Exchange (ETDEWEB) Paulo Moises de Oliveira, Hueder [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP (Brazil); Gehlen, Marcelo Henrique [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP (Brazil)]. E-mail: [email protected] 2006-12-15 Atactic poly(methacrylic acid) labeled with acridine and Nile blue (NB) were studied by photophysical techniques in bulk solid state and in solution-cast films over different surfaces (glass, ITO, and polymethylmethacrylate). In the systems with both dyes, energy transfer from acridine to NB occurs with an efficiency depending on the type of substrate (solid or film). The films are more disordered fluorescent rigid media than the bulk chromophoric or bichromophoric polymers, and this effect is ascribed to inhomogeneous distribution of the dyes in the film. This effect enhances dye bimolecular interactions and increases the energy transfer rates between acridine donor and NB acceptor. Bimodal distributions of donor fluorescence lifetimes are observed.
  14. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties. Science.gov (United States) Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R 2014-05-12 The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.
  15. Ethyl cellulose microcapsules for protecting and controlled release of folic acid. Science.gov (United States) Prasertmanakit, Satit; Praphairaksit, Nalena; Chiangthong, Worawadee; Muangsin, Nongnuj 2009-01-01 Ethyl cellulose microcapsules were developed for use as a drug-delivery device for protecting folic acid from release and degradation in the undesirable environmental conditions of the stomach, whilst allowing its release in the intestinal tract to make it available for absorption. The controlled release folic acid-loaded ethyl cellulose microcapsules were prepared by oil-in-oil emulsion solvent evaporation using a mixed solvent system, consisting of a 9:1 (v/v) ratio of acetone:methanol and light liquid paraffin as the dispersed and continuous phase. Span 80 was used as the surfactant to stabilize the emulsion. Scanning electron microscopy revealed that the microcapsules had a spherical shape. However, the particulate properties and in vitro release profile depended on the concentrations of the ethyl cellulose, Span 80 emulsifier, sucrose (pore inducer), and folic acid. The average diameter of the microcapsules increased from 300 to 448 microm, whilst the folic acid release rate decreased from 52% to 40%, as the ethyl cellulose concentration was increased from 2.5% to 7.5% (w/v). Increasing the Span 80 concentration from 1% to 4% (v/v) decreased the average diameter of microcapsules from 300 to 141 microm and increased the folic acid release rate from 52% to 79%. The addition of 2.5-7.5% (w/v) of sucrose improved the folic acid release from the microcapsules. The entrapment efficiency was improved from 64% to 88% when the initial folic acid concentration was increased from 1 to 3 mg/ml.
  16. Obtention of zinc polymethacrylate via free radicals induced by gamma radiation International Nuclear Information System (INIS) Urena N, F.; Flores E, J. 2000-01-01 The objective of this work was to synthesise the monomer of zinc methacrylate and subsequently to carry out the polymerization reaction with the purpose to obtain the compound desired, the zinc polymethacrylate. For this it was used a gamma radiation source, 60 Co, as initiator of the polymerization reaction. (Author)
  17. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium NARCIS (Netherlands) Bejarano-Jimenez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Oritz-Ledon, C.A.; Chazaro-Ruiz, L.F. 2014-01-01 Super absorbent polymers of acrylic acid-graphene oxide (PAA-GO) were synthesized with different percentage of chemical neutralization (0, 10, and 20%) of the acrylic acid monomer before its polymerization. The influence of their swelling and adsorption/desorption capacity of cadmium ions in aqueous
  18. Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain International Nuclear Information System (INIS) Kohriyama, Kazuaki; Matsuoka, Masato; Igisu, Hideki 1994-01-01 In vitro, both acrylamide and acrylic acid inhibited creatine kinase (CK) activity in rat brain homogenates, and acrylic acid was more potent than acrylamide. In vivo, however, when given i.p. 50 mg/kg per day for 8 days to rats, only acrylamide inhibited CK activity in the brain and caused apparent neurological signs. 14 C in the brain 24 h after the injection of 14 C-labelled chemicals was more than 7 times greater with acrylamide than with acrylic acid. The inhibition of CK activity by acrylamide varied in eight regions of the brain; from 54% in hypothalamus to 27% in cerebellar vermis. The regional difference of CK inhibition, however, did not agree well with either 14 C distribution or with the distribution in regions which appear clinically or pathologically vulnerable to acrylamide. (orig.)
  19. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution Science.gov (United States) Kamarudin, Sabariah; Mohammad, Masita 2018-04-01 A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.
  20. Separation of water and oil by poly (acrylic acid)-coated stainless steel mesh prepared by radiation crosslinking Energy Technology Data Exchange (ETDEWEB) Nho, Young Chang; Shin, Jung Woong; Park, Jong Seok; Lim, Young Mook; Jeun, Joon Pyo; Kang, Phil Hyun [Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of) 2015-05-15 The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.
  1. Time resolved fluorescence anisotropy of basic dyes bound to poly(methacrylic acid in solution Oliveira Hueder Paulo M. de 2003-01-01 Full Text Available Solutions of atactic poly(methacrylic acid, PMAA, with molecular weights in the range of (1.6 to 3.4 x 10(5 g mol-1, and labeled with the fluorescent dyes 9-aminoacridine or Nile blue were studied by photophysical measurements as a function of solvent viscosity and polarity. The conformational behavior of the PMAA chain segments around the fluorescent probe was reported by the change in the rotational diffusion of the dyes. Ethylene glycol swells the polymer chain compared with the more contracted conformation of PMAA in 50% water/ethylene glycol. The change in the rotational relaxation time of the dye bound to PMAA with the decrease of water content in the solvent mixture indicates a progressive expansion of polymer chain to a more open coil form in solution.
  2. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane Science.gov (United States) Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A. 2015-12-01 In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.
  3. Radiolysis of poly(acrylic acid) in aqueous solution Energy Technology Data Exchange (ETDEWEB) Ulanski, P [Max-Planck-Institut fuer Strahlenchemie, Muelheim an der Ruhr (Germany); [Politechnika Lodzka, Lodz (Poland); Bothe, E; Hildenbrand, K; Sonntag, C von [Max-Planck-Institut fuer Strahlenchemie, Muelheim an der Ruhr (Germany); Rosiak, J M [Politechnika Lodzka, Lodz (Poland) 1995-10-01 Poly(acrylic acid), PAA, reacts with OH-radicals yielding -CH-CH(CO{sub 2}H)- ({beta}-radicals) and -CH{sub 2}-C(CO{sub 2}H)-({alpha}-radicals) in a ratio of approximately 2:1. This estimate is based on pulse radiolysis data where the absorption spectrum of the PAA-radicals was compared with the spectra of {alpha}-radicals from model systems. The {beta}-radicals convert slowly into {alpha}-radicals (k = 0.7s {sup -1} at pH 10). This process has also been observed by ESR. At PAA-concentrations of 10{sup -2} mol dm{sup -3} chain scission dominates over other competing reactions except at low pH. The rate of chain scission was followed by pulse conductometry and in the pH range 7-9 k = 4 x 10{sup -2}s{sup -1} was observed. Oxygen reacts with PAA-radicals with k = 3.1 x 10{sup 8} dm{sup 3} mol{sup -1} s{sup -1} at pH 3.5 and k = 1.0 x 10{sup 8} dm{sup 3} mol{sup -1} s{sup -1} at pH 10. The corresponding peroxyl radicals undergo slow intramolecular H-transfer yielding a UV-absorbing product whose properties are that of 1,3-diketones. (Author).
  4. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni International Nuclear Information System (INIS) Dorantes, G.; Urena, F.; Lopez, R.; Lopez, R. 1997-01-01 In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)
  5. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam Science.gov (United States) Bong, Jihye; Shin, Dongho; Kwon, Soo-Il 2014-01-01 The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.
  6. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins Science.gov (United States) Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines 2011-01-01 A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…
  7. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid. Science.gov (United States) Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel 2007-10-15 The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.
  8. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry Energy Technology Data Exchange (ETDEWEB) Giordanengo, Remi [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Viel, Stephane [Aix-Marseille Universite - CNRS, UMR 6263: Institut des Sciences Moleculaires de Marseille, Chimiometrie et Spectrometries, F-13397 Marseille (France); Hidalgo, Manuel; Allard-Breton, Beatrice [ARKEMA, Centre de Recherche Rhone Alpes, Rue Henri Moissan, F-69493 Pierre-Benite (France); Thevand, Andre [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Charles, Laurence, E-mail: [email protected] [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France) 2009-11-03 Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. {sup 1}H and {sup 13}C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.
  9. Phase equilibrium measurements and thermodynamic modelling for the system (CO2 + ethyl palmitate + ethanol) at high pressures International Nuclear Information System (INIS) Gaschi, Priscilla S.; Mafra, Marcos R.; Ndiaye, Papa M.; Corazza, Marcos L. 2013-01-01 Graphical abstract: Ethyl palmitate and biodiesel comparison in a pressure–composition diagram for the systems (CO 2 + ethyl palmitate + biodiesel), at different temperatures. Highlights: ► We measured VLE, LLE, and VLLE for the system (CO 2 + ethyl palmitate + ethanol). ► The saturation pressures were obtained using a variable-volume view cell. ► Phase envelope of (CO 2 + ethyl palmitate) is different that (CO 2 + soybean oil biodiesel). ► The experimental data were modeled using PR-vdW2 and PR–WS equations of state. - Abstract: This work reports phase equilibrium measurements for the binary {CO 2 (1) + ethyl palmitate(2)} and ternary {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} systems at high pressures. There is currently great interest in biodiesel production processes involving supercritical and/or pressurized solvents, such as non-catalytic supercritical biodiesel production and enzyme-catalysed biodiesel production. Also, supercritical CO 2 can offer an interesting alternative for glycerol separation in the biodiesel purification step in a water-free process. In this context, the main goal of this work was to investigate the phase behaviour of binary and ternary systems involving CO 2 , a pure constituent of biodiesel ethyl palmitate and ethanol. Experiments were carried out in a high-pressure variable-volume view cell with operating temperatures ranging from (303.15 to 353.15) K and pressures up to 21 MPa. The CO 2 mole fraction ranged from 0.5033 to 0.9913 for the binary {CO 2 (1) + ethyl palmitate(2)} system and from 0.4436 to 0.9712 for ternary system {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} system with ethyl ester to ethanol molar ratios of (1:6), (1:3), and (1:1). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL) phase transitions were observed. The experimental data sets were successfully modeled using the Peng–Robinson equation of state with the classical van der Waals
  10. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid) Institute of Scientific and Technical Information of China (English) Bing LIU; Zhi Lan LIU; Ren Xi ZHUO 2006-01-01 Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.
  11. Thermophysical Properties of Aircraft Structural Materials in Solid and Molten States. A Comprehensive Survey of Available Data and Feasibility Study of Estimation and Measurement. Science.gov (United States) 1974-08-01 methylmethacrylate and 0-100% methacrylic acid . 25-300 90025 Polymethacrylic acid . 50-200 66583 Polyethylm ethacrylate, poly-n-butyl acrylate, and...Polyacrylic acid and some of its salts (H, Na, Cu, Hg). 10. Lucite "Lucite" is a trade name of DuPont for polymethylmethacrylate (PMMA). The other trade name...2.2 40338 7.13 mm before and after methacrylate) fading. Poly(n-butyl 300 2.0-15.0 19814 methacrylate) Poly(acrylic acid ) 300 3-7 34840 Poly( ethylene
  12. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta Energy Technology Data Exchange (ETDEWEB) Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: [email protected] [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil) 2013-01-15 The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)
  13. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta International Nuclear Information System (INIS) Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. 2013-01-01 The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)
  14. Recovery of Acrylic Acid Using Calcium Peroxide Nanoparticles: Thermodynamics and Continuous Column Study
  15. S. De 2018-03-01 Full Text Available The thermodynamic parameters (DGº, DHº, and DSº for adsorption of acrylic acid on CaO2 nanoparticle were estimated in the temperature range of 300.15 – 313.15 K, which helps to evaluate the feasibility of adsorption process, nature of adsorption process, and affinity of adsorbent toward solute molecule. A dynamic adsorption study in a fixed-bed column was performed using CaO2 nanoparticle for the recovery of acrylic acid from aqueous stream. The breakthrough curves of adsorption system were obtained for different process variables, such as initial acrylic acid concentration (2882–7206 mg L–1, flow rate (5–9 mL min–1, and bed height (10–20 cm. The bed-depth service time model, Thomas model, Yoon-Nelson model, and deactivation kinetic model were applied to the experimental data to predict the column performance. The data were in good agreement with the deactivation kinetic model. The presented results may be useful for the design of adsorption system using nanoparticles, which can be further extended to other systems.
  16. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber Siti Nurul Ain Md Jamil 2014-09-01 Full Text Available A synthesis of acrylonitrile (AN/butyl acrylate (BA/fumaronitrile (FN and AN/EHA (ethyl hexyl acrylate/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS and potassium persulphate (KPS as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg and stabilization temperature was studied using Differential Scanning Calorimetry (DSC. The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA and FN were 55%–71%, 85%–91% and 76%–79%, respectively. It was found that with the same comonomer feed (10%, the Tg of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C. AN/EHA/FN terpolymer also exhibited a lower Tg at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C. By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%. It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C. In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1% and AN/EHA copolymer (38.0%.
  17. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber. Science.gov (United States) Jamil, Siti Nurul Ain Md; Daik, Rusli; Ahmad, Ishak 2014-09-01 A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (T g ) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA) and FN were 55%-71%, 85%-91% and 76%-79%, respectively. It was found that with the same comonomer feed (10%), the T g of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C). AN/EHA/FN terpolymer also exhibited a lower T g at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C). By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%). It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1%) and AN/EHA copolymer (38.0%).
  18. Surfactant and counter-ion distribution in styrene-butyl acrylate-acrylic acid dry latex submonolayers Keslarek Amauri José 2004-01-01 Full Text Available Styrene-butyl acrylate-acrylic acid latex submonolayers prepared using a non-reactive phosphate surfactant together with a reactive sulfonate surfactant were examined in a transmission microscope using electron energy loss spectroscopy imaging (ESI-TEM. Phosphorus is nearly absent from the particles core but it is detected in a thick shell and in unusual, strongly scattering structures with a low carbon content, and largely made out of inorganic phosphate. P is also dispersed outside the particles, while S is uniformly distributed within then. The Na and N elemental maps show that the respective monovalent ions (Na+ and NH4+ have different distributions, in the latex: Na signal within the particles is stronger than in the background, while N is accumulated at the particle borders. The distributions of surfactant and counter-ions are thus different from some current assumptions, but they support recent results on the distribution of ionic constituents in latex films, by scanning electric potential microscopy.
  19. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery. Science.gov (United States) Sajeesh, S; Bouchemal, K; Sharma, C P; Vauthier, C 2010-02-01 Aim of the present work was to develop novel thiol-functionalized hydrogel microparticles based on poly(methacrylic acid)-chitosan-poly(ethylene glycol) (PCP) for oral drug delivery applications. PCP microparticles were prepared by a modified ionic gelation process in aqueous medium. Thiol modification of surface carboxylic acid groups of PCP micro particles was carried out by coupling l-cysteine with a water-soluble carbodiimide. Ellman's method was adopted to quantify the sulfhydryl groups, and dynamic light-scattering technique was used to measure the average particle size. Cytotoxicity of the modified particles was evaluated on Caco 2 cells by MTT assay. Effect of thiol modification on permeability of paracellular marker fluorescence dextran (FD4) was evaluated on Caco 2 cell monolayers and freshly excised rat intestinal tissue with an Ussing chamber set-up. Mucoadhesion experiments were carried out by an ex vivo bioadhesion method with excised rat intestinal tissue. The average size of the PCP microparticles was increased after thiol modification. Thiolated microparticles significantly improved the paracellular permeability of FD4 across Caco 2 cell monolayers, with no sign of toxicity. However, the efficacy of thiolated system remained low when permeation experiments were carried out across excised intestinal membrane. This was attributed to the high adhesion of the thiolated particles on the gut mucosa. Nevertheless, it can be concluded that surface thiolation is an interesting strategy to improve paracellular permeability of hydrophilic macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.
  20. Synthesis and characterization of kappaphycus seaweed-poly (acrylic) acid superabsorbent hydrogel for agricultural use International Nuclear Information System (INIS) Encinas, Angelica Marie E. 2015-04-01 The main objective of this research is to synthesize and characterize kappaphycus seaweed-poly (acrylic) acid superabsorbent hydrogel for agricultural use. The superabsorbent polymers (SAPs), KCSW: PAA hydrogels were synthesized by using gamma radiation technique from Cobalt-60 source at absorbed dose 0f 5, 10 and 15 kGy. The effect of absorbed dose, seaweed concentration, and concentration of acrylic acid on the degree of swelling was studied and optimum swelling conditions were established. Irradiated samples of 3% KCSW, 50% neutralized AAC at an absorbed dose of 10kGy gave the highest degree of swelling and gel fraction and were found to be suitable for application in the agriculture. Samples with different concentrations of acrylic acid were characterized using FTIR and TGA. The water retention experiment in sandy soil showed high water retention capacity of KCSW: PAA hydrogel at a value of 92% for a period of 7 days. Effect of the germination of mung bean showed very promising result of 78% germination.(author)
  21. Equilibrium and Kinetic Sorption of Some Heavy Metals from Aqueous Waste Solutions Using p (AAc-HEMA) International Nuclear Information System (INIS) El-Sayed, A.H.; Khalil, F.H.; Elnesr, E.; Mansour, T.; El-Gammal, B.; El -Sabbah, M.M.B. 2013-01-01 Removal of heavy metals from aqueous waste solution using poly acrylic acid / 2-hydroxy ethyle methacrylate ( p-AAc/ HEMA) was investigated. Experiments were carried out as function of contact time, initial concentration, ph, particle size and temperature. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. The results indicated that poly acrylic acid / 2-hydroxy ethyle methacrylate (p-AAc/ HEMA) is suitable as adsorbent material for adsorption of Sr 2+ , Co 2+ , Cd 2+ , Zn 2+ , Nd 3+ and Eu 3+ radio active nuclei from aqueous solutions.
  1. Dual patterning of a poly(acrylic acid) layer by electron-beam and block copolymer lithographies. Science.gov (United States) Pearson, Anthony C; Linford, Matthew R; Harb, John N; Davis, Robert C 2013-06-18 We show the controllable patterning of palladium nanoparticles in both one and two dimensions using electron-beam lithography and reactive ion etching of a thin film of poly(acrylic acid) (PAA). After the initial patterning of the PAA, a monolayer of polystyrene-b-poly-2-vinylpyridine micelles is spun cast onto the surface. A short reactive ion etch is then used to transfer the micelle pattern into the patterned poly(acrylic acid). Finally, PdCl2 is loaded from solution into the patterned poly(acrylic acid) features, and a reactive-ion etching process is used to remove the remaining polymer and form Pd nanoparticles. This method yields location-controlled patches of nanoparticles, including single- and double-file lines and nanoparticle pairs. A locational accuracy of 9 nm or less in one direction was achieved by optimizing the size of the PAA features.
  2. Polarographic determination of stability constants of Eu(III) complexes with acrylic acid and crotonic acid Energy Technology Data Exchange (ETDEWEB) Rao, A L.J.; Makhan, S [Punjabi Univ., Patiala (India). Dept. of Chemistry 1979-07-01 Compositions and formation constants of Eu(III) complexes with acrylic acid and crotonic acid have been studied polarographically. The reductions are reversible and diffusion-controlled. The plot of Esub(1/2) versus -log Csub(x) is linear in the case of Eu(III)-acrylic acid system. The change in number of ligands bound to europium during reduction was found to be approximately equal to 1 and ratio of dissociation constants of Eu(III) and Eu(II) was found to be 40.76 x 10sup(-2). In the case of Eu(III)-crotonic acid system, composition and formation constants have been calculated by the method of Deford and Hume. Crotonic acid forms two complex species with europium (..beta../sub 1/, 60; ..beta../sub 2/, 4.2x10sup(+2)). The percentage distribution of various complex species as a function of ligand concentration has been calculated in the case of Eu(III)-crotonic acid system. A polarographic method for the determination of micro amounts of Eu(III) in the presence of diverse ions has been developed. Under optimum conditions Eu(III) in the concentration range 4x10sup(-4)-2x10sup(-3)M can be successfully determined in various mixtures.
  3. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution OpenAIRE Nitri Arinda; Emil Budianto; Helmiyati 2009-01-01 Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the exp...
  4. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates. Science.gov (United States) Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki 2017-10-30 We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.
  5. Microalgae wet extraction using N-ethyl butylamine for fatty acid production Ying Du 2016-04-01 Full Text Available Microalgae are considered a promising feedstock for the production of food ingredients, cosmetics, pharmaceutical products and biofuels. The energy intensity of drying and cell breaking of algae and solvent recovery afterwards hindered the route of algae biorefinery. In this work the influences of freeze drying and cell breaking to the extraction efficiency of crude lipid yield and fatty acid yield were investigated. Results showed that drying and cell breaking are not necessary for N-ethyl butylamine extraction, because good yields were obtained without. Crude lipid yield and fatty acid yield using N-ethyl butylamine were comparable with Bligh & Dyer extraction, making N-ethyl butylamine a candidate for further development of an energy efficient lipid extraction technology for non-broken microalgae. Keywords: Microalgae, Lipids, Extraction, Switchable solvent, Secondary amine
  6. Preparation of the copolymer of acrylic acid and acrylamide grafted onto polyethylene and its complexation with samarium ion International Nuclear Information System (INIS) Kido, Junji; Akiba, Hideto; Nishide, Hiroyuki; Tsuchida, Eishun; Omichi, Hideki; Okamoto, Jiro. 1986-01-01 Acrylic acid (AA) and acrylamide (AAm) were graft-copolymerized onto polyethylene (PE) powder by the pre-irradiation method. Complex formation constants of Sm ion with the PE powder grafted with both AA and AAm (PE-g-(AA-co-AAm)) were larger than those with the PE powder grafted with AA (PE-g-AA). Sm ion was efficiently separated from the solution containing both Sm ion and a transition metal ion such as Cu ion. Even after the γ-ray irradiation on PE-g-(AA-co-AAm) and PE-g-AA, the adsorption did not decrease. (author)
  7. Comparative studies of the rheological behaviour of oil epoxy and oil polyesteramide blends with polymethacrylic acid Ufana Riaz 2017-05-01 Full Text Available Polymer blends have replaced a variety of pristine polymers in different sectors due to their desired synergetic properties such as durability, heat resistance, reduced wear & tear, flexibility, chemical resistance and longer shelf life that can be achieved by making minor alterations in their compositions. The modification of polymer blends by using sustainable resource based polymers can not only fulfil our ecological but also our economic and social needs. The present work reports the compatibility studies of oil derived epoxy and polyesteramide blends with polymethacrylic acid (PMA. The aim is to highlight the role of rheology in predicting the compatibility of these blends in the solution and solid phases which is a crucial parameter that decides the processibility and viability of these materials for commercialization.
  8. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films. Science.gov (United States) Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun 2017-11-14 The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.
  9. One-step routes from di- and triblock copolymer precursors to hydrophilic nanoporous poly(acrylic acid)-b-polystyrene DEFF Research Database (Denmark) Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars 2008-01-01 Nanoporous polystyrene with hydrophilic pores was prepared from di- and triblock copolymer precursors. The precursor material was either a poly(tert-butyl acryl ate)-b-polystyrene (PtBA-b-PS) diblock copolymer synthesized by atom transfer radical polymerization (ATRP) or a polydimethylsiloxane......-b-poly(tertbutyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer synthesized by a combination of living anionic polymerization and ATRP. In the latter copolymer, PS was the matrix and mechanically stable component, PtBA was converted by acidic deprotection to hydrophilic poly(acrylic acid) (PAA) providing...
  10. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor KAUST Repository Wang, Jui-Yang 2017-06-01 A jet-stirred reactor was designed and constructed in the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST); was validated with n-heptane, iso-octane oxidation and cyclohexene pyrolysis. Different configurations of the setup have been tested to achieve good agreement with results from the literature. Test results of the reactor indicated that installation of a pumping system at the downstream side in the experimental apparatus was necessary to avoid the reoccurrence of reactions in the sampling probe. Experiments in ethyl levulinate oxidation were conducted in the reactor under several equivalence ratios, from 600 to 1000 K, 1 bar and 2 s residence time. Oxygenated species detected included methyl vinyl ketone, levulinic acid and ethyl acrylate. Ethylene, methane, carbon monoxide, hydrogen, oxygen and carbon dioxide were further quantified with a gas chromatography, coupled with a flame ionization detector and a thermal conductivity detector. The ethyl levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental data, some discrepancies were noted; predictions of ethylene production were not well matched. The kinetic model was improved by updating several classes of reactions: unimolecular decomposition, H-abstraction, C-C and C-O beta-scissions of fuel radicals. The updated model was then compared again with experimental results and good agreement was achieved, proving that the concerted eliminated reaction is crucial for the kinetic mechanism formulation of ethyl levulinate. In addition, primary reaction pathways and sensitivity analysis were performed to describe the role of molecular structure in combustion (800 and 1000 K for ethyl levulinate oxidation in the jet-stirred reactor).
  11. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam Energy Technology Data Exchange (ETDEWEB) Bong, Jihye [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of); Shin, Dongho [Proton Therapy Center, National Cancer Center, Goyang 410-769 (Korea, Republic of); Kwon, Soo-Il, E-mail: [email protected] [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of) 2014-01-21 The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.
  12. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions Science.gov (United States) Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde 2018-06-01 A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.
  13. Influence of different media on micromorphology of radiation synthesized poly(acrylamide-sodium acrylate) hydrogels International Nuclear Information System (INIS) Shan Jun; Chen Jie; Liu Zhanjun 1998-01-01 Poly(acrylamide-sodium acrylate) hydrogels were synthesized by 60 Co-γ ray radiation polymerization in aqueous solutions. The micromorphology of hydrogel samples dehydrated in the different alcohol media such as methanol, ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, and tert-butyl alcohol was observed by scanning electron microscope (SEM). The critical concentrations at volume phase transition of the hydrogels in the different alcohol medium-water solutions were obtained. The results indicate that the hydrogel samples dehydrated in methanol and in ethyl alcohol display bubble-film network structures, and those in n-propyl alcohol and in iso-propyl alcohol and in tert-butyl alcohol demonstrate the porous structures including the dense phase. The reason is discussed from the critical concentrations and solubility parameters of different alcohol media. (author)
  14. rac-tert-Butyl{2-hydroxy-2-[4-hydroxy-3-(hydroxymethylphenyl]ethyl}azanium acrylate Wenju Liu 2017-08-01 Full Text Available The title salt, C13H22NO3+·C3H3O2−, comprises one salbutamol cation and an acrylate anion. The acrylate anion is linked to the salbutamol cation via an O—H...O and an N—H...O hydrogen bond. The C=C group of the acrylate anion is disordered over two positions, with refined site occupancies of 0.812 (7 and 0.188 (7. The crystal structure is stabilized by N—H...O and O—H...O hydrogen-bonding interactions.
  15. Glycerol oxidehydration into acrolein and acrylic acid over W/V/Nb bronzes with hexagonal structure Energy Technology Data Exchange (ETDEWEB) Basile, F.; Cavani, F.; Chieregato, A. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; CIRI Energia e Ambiente, Bologna (Italy); Concepcion, P.; Lopez Nieto, J.M.; Soriano, M.D. [Univ. Politecnica de Valencia (Spain). Inst. de Tecnologia Quimica; Liosi, G.; Trevisanut, C. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali 2012-07-01 This paper deals with an investigation of hexagonal W-V-Nb-O and W-V-Mo-O bronzes as catalysts for the one-pot oxidehydration of glycerol into acrylic acid. In a previous work, we reported a study on a bi-component bronze W-V-O that allowed us to obtain a 25% acrylic acid selectivity; in the current work, the incorporation of either Nb or Mo in a tri-component bronze structure allowed us to tune the acid and redox properties of the catalyst, so as to study their influence on the overall reaction scheme. (orig.)
  16. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose CSIR Research Space (South Africa) Djerafi, R 2017-05-01 Full Text Available . Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230 nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose...
  17. A study of using polythiol compounds and 2-ethyl-hexyl-acrylate with carbon tetrachloride as sensitizers for radiation vulcanization of natural rubber latex International Nuclear Information System (INIS) Polsuksiri, C. 1989-01-01 Experiments on using 3 different compounds of polythiol and an acrylate as sensitizer for radiation vulcanization were conducted. It was found that 1,4 butane diol propane tris-3-mercapto propionate showed the tendency to be a good sensitizer. The tensile strength of the rubber film prepared from the irradiated latex was found to be 14 MPa at sensitizer concentration of 1 phr and radiation dose of 45 kGy. As for 2-ethyl hexyl acrylate (2EHA), the maximum tensile strength of rubber film was found to be 23 MPa at concentration of 3 phr and radiation dose of 35 kGy. The mixture of 2 EHA and CCl 4 at various ratio was also used as sensitizer. The optimum ratio was found to be 5:1 at concentration of 6 phr and radiation dose of 15 kGy. The maximum tensile strength was as high as 25 MPa. The study also revealed that the radiation vulcanized latex with crosslink density of about 18x10 18 C.L./cm 3 would give the rubber film of highest tensile strength
  18. Electrochemical investigation on an acrylated thiophene Energy Technology Data Exchange (ETDEWEB) Hogervorst, A.C.R. (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Kock, T.J.J.M. (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Ruiter, B. de (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Waal, A. van der (TNO Plastics and Rubber Research Inst., Delft (Netherlands)) 1993-03-22 The electrochemical behaviour of electropolymerized 2-(3-thienyl)ethyl acrylate (PAcrT) has been investigated, and compared to the behaviour of electropolymerized thiophene and 3-n-decylthiophene (PDT). The effect of electron beam irradiation on the electrochemical properties of these three polymers has been studied. It has been found that for PAcrT the oxidation wave shifts to higher potentials upon electron beam irradiation. For PDT a similar but smaller change occurs. We suggest that the shift of the oxidation wave of PAcrT is caused by cross-links, formed between the acrylate substituents, which fixate the main chain parts in twisted states and reduce the conjugation length. (orig.)
  19. Synthesis of superabsorbent hydrogel by radiation crosslinking of acrylic acid, semi-refined kappa-carrageenan and sugarcane bagasse blend International Nuclear Information System (INIS) Jizmundo, Leonie-Lou Dominguez 2015-04-01 Superabsorbent hydrogels have three-dimensional networks that enable it to exhibit great water absorption capacity leading to its promising applications. However, existing commercial hydrogels are mainly acrylic acid which causes environmental problems. In this study, the incorporation of agricultural waste as filler and polysaccharide from natural sources as binder for the production of superabsorbent hydrogel was done to reduce the use of acrylic acid as well as its environmental impact while adding value to the incorporated materials. A series of superabsorbent hydrogel with the blend of acrylic acid, semi-refined kappa carrageenan and sugarcane bagasse were synthesized by radiation crosslinking. The gel fraction and swelling capacity of the hydrogels were determined and studied. The characterizations were facilitated by Fourier transform infrared spectroscopy technique (FTIR) and Thermogravimetric Analysis (TGA). In the results obtained from analyses, the characteristic peaks of acrylic acid and sugarcane bagasse were observed in the FTIR spectra and the three step peaks if synthesized hydrogel in its TGA implies an improvement in thermal stability of the product. The synthesized superabsorbent hydrogel blends had exhibited comparable gel fraction to that of the polyacrylic acid hydrogel, had great swelling capacity, and achieved equilibrium degree of swelling within 72-96 hours. The optimum synthesized superabsorbent hydrogel is 3% semi-refined kappa-carrageenan, 3% sugarcane bagasse, 15% acrylic acid neutralize up to 50% and irradiated at 15kGy dose which exhibited a swelling of 599.53 and gel fraction of 39.73. (author)
  20. Computational study of chain transfer to monomer reactions in high-temperature polymerization of alkyl acrylates. Science.gov (United States) Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M 2013-03-28 This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.
  1. Synthesis of acrylic prepolymer International Nuclear Information System (INIS) Hussin bin Mohd Nor; Dahlan bin Haji Mohd; Mohamad Hilmi bin Mahmood. 1988-04-01 An acrylic prepolymer was synthesized from glycidyl methacrylate (GMA), butyl methacrylate (BMA), methyl methacrylate (MMA) and acrylic acid (AA). Butyl acetate (BAc), benzoyl peroxide (BzO), 4-methoxyphenol (MPh) and triethylamine (TEA) were used as solvent, initiator, inhibitor and catalyst respectively. Observations of the synthesis leading to the formation of acrylic prepolymer are described. (author)
  2. Atom transfer radical polymerization of n-butyl acrylate catalyzed by atom transfer radical polymerization of n-butyl acrylate catalyzed by NARCIS (Netherlands) Zhang, H.; Linde, van der R. 2002-01-01 The homogeneous atom transfer radical polymerization (ATRP) of n-butyl acrylate with CuBr/N-(n-hexyl)-2-pyridylmethanimine as a catalyst and ethyl 2-bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different
  3. In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone /starch hydrogels grafted with acrylic acid synthesized by gamma radiation International Nuclear Information System (INIS) Eid, M. 2008-01-01 Co-polymeric hydrogels containing N-vinyl pyrrolidone and starch grafted with acrylic acid were synthesized by gamma radiation. Their gel contents, grafting process and swelling were evaluated. The gels were also characterized by thermal gravimetric analysis. The gel content found to be increase with increasing the irradiation dose up to 50 kGy then decrease. The grafting percent increase by increasing the percentage of acrylic acid in the grafted hydrogels. The thermal stability and the rate of the thermal decomposition showed to be changed according to the different composition of the hydrogels. It also showed a decrease in the maximum rate of the thermal decomposition by the increasing of the irradiation dose from 20 to 30 kGy and increases by increasing the irradiation dose from 30 to 70 kGy. The hydrogels loaded with vitamin B 12 as drug model, demonstrated a decrease release in acidic medium than the neutral one
  4. Hydrogen Bonding Interaction between 1-Propanol and Acrylic ... African Journals Online (AJOL) The association between 1-propanol and acrylic esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) in non-polar solvents, viz. n-heptane, CCl4, and benzene has been investigated by means of FTIR spectroscopy. The formation constants of the 1:1 complexes have been calculated using Nash's method.
  5. Preparation and characterization of acrylic acid-grafted poly (vinyl alcohol) hydrogel actuators using γ-ray irradiation International Nuclear Information System (INIS) An, Sung Jun; Lim, Youn Mook; Gwon, Hui Jeong; Kim, Yun Hye; Youn, Min Ho; Nho, Young Chang; Han, Dong Hyun; Kim, Chong Yeal 2008-01-01 Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and artificial muscles. In this study, poly (vinyl alcohol)(PVA) grafted acrylic acid monomer (PVA-g-AAc) hydrogels were prepared by 60 Co γ-ray irradiation and their properties such as degree of grafting and weight swelling in electrostimulation as an artificial muscle and actuator were investigated
  6. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. Science.gov (United States) Sajeesh, S; Sharma, Chandra P 2006-02-01 In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.
  7. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis. Science.gov (United States) Shirkhani, Khojasteh; Teo, Ian; Armstrong-James, Darius; Shaunak, Sunil 2015-07-01 Aspergillus species are the major life threatening fungal pathogens in transplant patients. Germination of inhaled fungal spores initiates infection, causes severe pneumonia, and has a mortality of >50%. This is leading to the consideration of pre-exposure prophylaxis to prevent infection. We made a very low MWt amphotericin B-polymethacrylic acid nanoparticle. It was not toxic to lung epithelial cells or monocyte-derived-macrophages in-vitro, or in an in-vivo transplant immuno-suppression mouse model of life threatening invasive aspergillosis. Three days of nebuliser based prophylaxis delivered the nanoparticle effectively to lung and prevented both fungal growth and lung inflammation. Protection from disease was associated with >99% killing of the Aspergillus and a 90% reduction in lung TNF-α; the primary driver of tissue destructive immuno-pathology. This study provides in-vivo proof-of-principle that very small and cost-effective nanoparticles can be made simply, and delivered safely and effectively to lung by the aerosol route to prevent fungal infections. Aspergillus is an opportunistic pathogen, which affects immunocompromised patients. One novel way to help fight against this infection is pre-exposure prophylaxis. The authors here made PMA based anionic hydrogels carrying amphotericin B, with mucoadhesive behavior. They showed that aerosol route of the drug was very effective in protecting against the disease in an in-vivo model and should provide a stepping-stone towards clinical trials in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  8. Extraction of lanthanides and actinides (III) by DI-2 ethyl dithiophosphoric acid and DI-2 ethyl hexyl monothiophosphoric acid. Structure of the complexes in the organic phase International Nuclear Information System (INIS) Pattee, D.; Musikas, C.; Faure, A.; Chachaty, C. 1986-09-01 To operate a trivalent actinide-lanthanide (III) group chemical separation from low pH nitric solutions we studied the extractive properties of the di-2 ethyl hexyl dithiophosphoric acid (HDEHDTP); this bidentate ligand which possesses a sulfur donor atom is a good extractant of soft acids. We so expect a better selectivity for the actinides (III) extraction. We also have investigated extractive properties of di-2 ethyl hexyl monothiophosphoric acid (HDEHTP) for trivalent actinides and lanthanides; HDEHDTP is a bidentate ligand with one oxygen donor atom and so is a better extractant for hard acids like actinides and lanthanides (III); but its selectivity is weak. The addition of TBP (tri-n butyl phosphate) to HDEHDTP deals to strong synergistic organic complexes with a great selectivity for Am(III). We explicited this phenomenon. When the metal is macroconcentrated the organic complexes aggregate and form inverted micelles
  9. Design and Synthesis of Novel Fluorine-containing Acrylates Institute of Scientific and Technical Information of China (English) 无 2005-01-01 A series of novel fluorine-containing acrylates 6a-6g were synthesized via the condensation of ethyl cyanoacetate and trifluoroacetic anhydride, followed by chloridization and the coupling reaction with amines. These new compounds exhibited some biological activity as preliminary bioassay indicated. A plausible reaction mechanism was outlined and discussed.
  10. A comparison of properties between carboxylated acrylic rubbers prepared by γ-ray irradiation and chemical method International Nuclear Information System (INIS) Wang Weiwei; Chang Zhenqi; Wang Mozhen; Zhang Zhicheng; Lv Pin 2006-01-01 Acrylic rubbers (ACM) carboxylated by acrylic acid or itaconic acid were prepared by 60 Co γ-ray or chemical-initiator (K 2 S 2 O 8 ) induced emulsion copolymerization. The polymers were characterized by Fourier transform infrared spectroscopy (FT-IR). Acid value, molecular weight and polydispersity index (PDI) of the polymers were determined by non-aqueous titration method and gel permeation chromatography (GPC), respectively. Vulcanization and mechanical properties of the filled ACM were studied by rheometric measurement, gel fraction analysis, mechanical property tests and dynamic mechanical thermal analysis (DMTA). The results show that the ACMs prepared by γ-ray irradiation have lower acid value, higher molecular weight and narrower PDI than chemically prepared ACMs of the same compositions. The itaconic acid carboxylated ACM has better cure characteristics and mechanical properties than the acrylic acid carboxylated ACM. The itaconic acid carboxylated ACM prepared by γ-ray irradiation has higher gel fraction and better cure characteristics as well as mechanical properties than that prepared by chemical method. (authors)
  11. Molecular aggregation states of poly{2-(perfluorooctyl)ethyl acrylate} polymer brush thin film analyzed by grazing incidence X-ray diffraction International Nuclear Information System (INIS) Yamaguchi, H; Honda, K; Takahara, A; Kobayashi, M; Morita, M; Masunaga, H; Sasaki, S; Takata, M; Sakata, O 2009-01-01 Fluoropolymer brush with crystalline side chains was prepared by surface-initiated atom transfer radical polymerization of 2-(perfluorooctyl)ethyl acrylate (FA-C 8 ) from a flat silicon substrate. The crystallization and the molecular aggregation structures of polymer side chain at the outermost surface and internal region in the brush film were characterized by grazing incidence X-ray diffraction (GIXD) measurement using two different incident angles of X-ray. At the air interface of PFA-C 8 brush film, the rod-like R f group was oriented perpendicular to the surface forming a hexagonal packing structure to reduce surface energy. In contrast, the oriented R f groups parallel to the substrate coexisted at the internal region in the brush. This unique depth dependence of crystalline state of the fluoropolymer brush was observed by surface-sensitive GIXD measurement.
  12. Preparation of poly (vinyl alcohol) membranes grafted with n-vinyl pyridine/ acrylic acid binary monomers International Nuclear Information System (INIS) Ajji, A.; Ali, A. 2014-03-01 Poly(vinyl alcohol) films were grafted with two monomers using gamma radiation, acrylic acid and N-vinyl pyridine. The influence of different parameters on the grafting yield was investigated as: the comonomer concentration and composition, and irradiation dose. The suitable conditions of the process had been determined to prepare PVA membranes have both properties of the two monomers, acrylic acid and vinyl pyridine as comonomer concentration and composition, and irradiation dose. Some properties of the membranes had been investigated as maximum swelling and grafting. Also the ability of the grafted films to adsorb some heavy metals and dyes was elaborated and discussed.(author)
  13. Bubble-point measurement for the binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide International Nuclear Information System (INIS) Baek, Seung-Hyun; Byun, Hun-Soo 2016-01-01 Highlights: • Phase behaviours for the (CO_2 + propargyl (meth)acrylate) systems by static method were measured. • (P, x) isotherms is obtained at pressures up to 19.14 MPa and at temperature of (313.2 to 393.2) K. • The (CO_2 + propargyl acrylate) and (CO_2 + propargyl methacrylate) systems exhibit type-I behaviour. - Abstract: Acrylate and methacrylate (acrylic acid type) are compounds with weak polarity which show a non-ideal behaviour. Phase behaviour of these systems play a significant role as organic solvents in industrial processes. High pressure phase behaviour data were reported for binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide. The bubble-point curves for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) mixtures were measured by static view cell apparatus at temperature range from 313.2 K to 393.2 K and at pressures below 19.14 MPa. The (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems exhibit type-I phase behaviour. The (carbon dioxide + (meth)acrylate) systems had continuous critical mixture curves with maximums in pressure located between the critical temperatures of carbon dioxide and propargyl acrylate or carbon dioxide and propargyl methacrylate. The solubility behaviour of propargyl (meth)acrylate in the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl acrylate) systems increases as the temperature increases at a fixed pressure. The experimental results for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems correlate with the Peng–Robinson equation of state using a van der Waals one-fluid mixing rule. The critical properties of propargyl acrylate and propargyl methacrylate were predicted with the Joback–Lyderson group contribution and Lee–Kesler method.
  14. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption Science.gov (United States) 2013-09-11 ..., 3-sulfopropyl acrylate, 3-sulfopropyl methacrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium, potassium, ammonium..., hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium, potassium...
  15. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones KAUST Repository Bruckmeier, Christian; Lehenmeier, Maximilian W.; Reichardt, Robert; Vagin, Sergei; Rieger, Bernhard 2010-01-01 The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β
  16. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery. Science.gov (United States) Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P 2010-08-01 In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  17. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation. Science.gov (United States) Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S 2016-07-08 Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.
  18. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles Energy Technology Data Exchange (ETDEWEB) Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa [Biogel Technology, Inc. (United States)], E-mail: [email protected] 2000-06-15 Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.
  19. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles International Nuclear Information System (INIS) Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa 2000-01-01 Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying
  20. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles Science.gov (United States) Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa 2000-06-01 Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.
  1. Polymethacrylic acid grafted psyllium (Psy- g-PMA): a novel material for waste water treatment Science.gov (United States) Kumar, Ranvijay; Sharma, Kaushlendra; Tiwary, K. P.; Sen, Gautam 2013-03-01 Polymethacrylic acid grafted psyllium (Psy- g-PMA) was synthesized by microwave assisted method, which involves a microwave irradiation in synergism with silver sulfate as a free radical initiator to initiate grafting reaction. Psy- g-PMA grades have been synthesized and characterized on structural basis (elemental analysis, FTIR spectroscopy, intrinsic viscosity study) as well as morphological and thermal studies, taking psyllium as reference. The effects of reaction time, amount of monomer and silver sulfate (free radical initiator) on grafting of PMA on psyllium backbone have been studied. It is observed that all the grades of Psy- g-PMA have higher intrinsic viscosities than that of psyllium. The best synthesized grade was Psy- g-PMA having intrinsic viscosity of 6.93 and 58 % grafting of PMA on the main polymer backbone. Further Psy- g-PMA applications as flocculants for waste water treatment have been investigated. Psy- g-PMA resulted in higher decrease in the flocculation parameters such as total dissolved solid or total solids compared to psyllium. Hence the result shows the possible application of grafted psyllium in wastewater treatment.
  2. Quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells Energy Technology Data Exchange (ETDEWEB) Luo, Yanting; Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742 (United States); Chu, Deryn [Sensors and Electron Device Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783 (United States) 2010-06-15 Instead of modification of pre-existing polymers, a new route of preparation of polyelectrolyte OH{sup -} conductive membranes via copolymerization of selected functional monomers was reported in this study. A random copolymer of poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) was synthesized via copolymerization, which was followed by quaternization and membrane casting. The intrinsic OH{sup -} conductivity of the free-standing polyelectrolyte membranes can reach 8.2 x 10{sup -3} S cm{sup -1} at 80 C. The alkaline fuel cells using copolymer polyelectrolytes demonstrated the feasibility of the preparation concept of these membranes. (author)
  3. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film International Nuclear Information System (INIS) Prasad, G.K.; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer 2012-01-01 Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 × 10 −3 min −1 . Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 × 10 −3 min −1 due to photocatalysis. Gas chromatography–mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P–O–C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: ► Synthesis of titania nanoparticles by sol–gel method. ► Fabrication of titania nanoparticulate film by dip coating. ► Paraoxon ethyl degradation reactions followed pseudo first order behaviour. ► Paraoxon-ethyl degraded to non toxic compounds like CO 2 , acetaldehyde, and nitrophenol.
  4. Attenuation of 60Co gamma rays by barium acrylic resin composite shields International Nuclear Information System (INIS) Abdulla, Riaz; Fidha, Mariyam; Sripathi Rao, B.H.; Kudkuli, Jagadish; Rekha, P.D.; Sharma, S.D. 2015-01-01 Oral squamous cell carcinoma is the sixth most common cancer reported globally, with an annual incidence of over 300,000 cases, of which 62% arise in developing countries. Radiation therapy is a treatment modality that uses ionizing radiation as a therapeutic agent. It is widely employed in the treatment of head and neck cancer, as a primary therapy coupled with surgical procedure and chemotherapy or as a palliative treatment for advanced tumors. However, radiotherapy can cause a series of complications such as xerostomia, mucositis, osteoradionecrosis, and radiation caries. Composite circular disc containing different ratios of acrylic and barium sulfate (BaSO 4 ) were made in-house. The purpose of this study was to evaluate the percentage attenuation from these composite shields in 60 Co gamma rays. A maximum of 8% radiation attenuation was achieved using 1:4 ratio of acrylic-BaSO 4 composite shields. The study proposes BaSO 4 as one of the compounds in combination with acrylic resin or any other thermoplastic substances for making biocompatible radiation attenuating devices. (author)
  5. Synthesis of acetic acid by catalytic oxidation of butenes-2. Synthesis of acetic acid from sec. -butyl alcohol and methyl ethyl ketone in vapor-phase catalytic oxidation Energy Technology Data Exchange (ETDEWEB) Yamashita, T.; Matsuzawa, Y.; Ninagawa, S. 1977-11-01 Eleven binary catalysts containing vanadium pentoxide (V/sub 2/O/sub 5/), 17 binary catalysts containing cobalt oxide (Co/sub 3/O/sub 4/), and 18 ternary catalysts containing both V/sub 2/O/sub 5/ and Co/sub 3/O/sub 4/ were screened for the stepwise conversion of sec.-butanol to methyl ethyl ketone (MEK) and acetic acid. Of the binary catalysts, 4:1 Rh/V and Co/V binary oxides gave the best acetic acid yields. With the Co/V catalyst, the selectivity for MEK increased rapidly as the cobalt content of the catalyst increased above 50%, reaching 81% at 226/sup 0/C and 90% conversion on 9:1 Co/V oxide. The 9:1 Co/V catalyst also yielded acetaldehyde from ethanol with 98% selectivity at 210/sup 0/C and acetone from isopropanol with 98% selectivity at 200/sup 0/C, but dehydrated tert.-butanol to isobutene. V/Cr and V/Sb binary oxides were the most effective catalysts for the oxidation of MEK to acetic acid, with 78-88% selectivities at 100% conversion at 260/sup 0/C. Of the ternary oxides tested for the one-step conversion of sec.-butanol to acetic acid, a 6:2:2 Co/V/Al catalyst gave best results, (i.e., 34% selectivity for acetic acid (45% for total acids) at 100% conversion and 68% selectivity (90% for total acids) at 50Vertical Bar3< conversion). Graphs, tables, and 21 references.
  6. Potassium fulvate-modified graft copolymer of acrylic acid onto cellulose as efficient chelating polymeric sorbent. Science.gov (United States) Mohamed, Magdy F; Essawy, Hisham A; Ammar, Nabila S; Ibrahim, Hanan S 2017-01-01 Acrylic acid (AA) was graft copolymerized from cellulose (Cell) in presence of potassium fulvate (KF) in order to enhance the chemical activity of the resulting chelating polymer and the handling as well. Fourier transform infrared (FTIR) proved that KF was efficiently inserted and became a permanent part of the network structure of the sorbent in parallel during the grafting copolymerization. Scanning electron microscopy (SEM) revealed intact homogeneous structure with uniform surface. This indicates improvement of the handling, however, it was not the case for the graft copolymer of acrylic acid onto cellulose in absence of KF, which is known to be brittle and lacks mechanical integrity. Effective insertion of this co-interpenetrating agent provided more functional groups, such as OH and COOH, which improved the chelating power of the produced sorbent as found for the removal of Cu 2+ ions from its aqueous solutions (the removal efficiency reached ∼98.9%). Different models were used to express the experimental data. The results corroborated conformity of the pseudo-second order kinetic model and Langmuir isotherm model to the sorption process, which translates into dominance of the chemisorption. Regeneration of the chelating polymers under harsh conditions did not affect the efficiency of copper ions uptake up to three successive cycles. A thermodynamic investigation ensured exothermic nature of the adsorption process that became less favourable at higher temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.
  7. Advances in acrylic-alkyd hybrid synthesis and characterization Science.gov (United States) Dziczkowski, Jamie 2008-10-01 In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film
  8. pH responsive N-succinyl chitosan/Poly (acrylamide-co-acrylic acid hydrogels and in vitro release of 5-fluorouracil. Shahid Bashir Full Text Available There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN hydrogels of N-succinyl-chitosan (NSC via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid(Poly (AAm-co-AA was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and field emission scanning electron microscope (FESEM. The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA, and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug
  9. Radiation-induced grafting of acrylic acid onto polyethylene filaments International Nuclear Information System (INIS) Kaji, K.; Sakurada, I.; Okada, T. 1981-01-01 Radiation-induced grafting of acrylic acid onto high density polyethylene (PE) filaments was carried out in order to raise softening temperature and impart flame retardance and hydrophilic properties. Mutual γ-irradiation method was employed for the grafting in a mixture of acrylic acid (AA), ethylene dichloride and water containing a small amount of ferrous ammonium sulfate. The rate of grafting was very low at room temperature. On the other hand, large percent grafts were obtained when the grafting was performed at an elevated temperature. Activation energy for the initial rate of grafting was found to be 17 kcal/mol between 20 and 60 0 C and 10 kcal/ mol between 60 and 80 0 C. Original PE filament begins to shrink at 70 0 C, shows maximum shrinkage of 50% at 130 0 C and then breaks off at 136 0 C. When a 34% AA graft is converted to metallic salt the graft filament retains its filament form even above 300 0 C and gives maximum shrinkage of 15%. Burning tests by a wire-netting basket method indicate that graft filaments and their metallic salts do not form melting drops upon burning and are self-extinguishing. Original PE filament shows no moisture absorption; however, that of AA-grafted PE increases with increasing graft percent. (author)
  10. Allergic contact dermatitis caused by nail acrylates in Europe. An EECDRG study DEFF Research Database (Denmark) Gonçalo, Margarida; Pinho, André; Agner, Tove 2018-01-01 BACKGROUND: Allergic contact dermatitis (ACD) caused by nail acrylates, also including methacrylates and cyanoacrylates here, is being increasingly reported. METHODS: A retrospective study in 11 European Environmental Contact Dermatitis Research Group (EECDRG) clinics collected information on cases......-hydroxypropyl methacrylate (88.6%), ethylene glycol dimethacrylate (69.2%), and ethyl cyanoacrylate (9.9%). CONCLUSIONS: Nail cosmetics were responsible for the majority of ACD cases caused by acrylates, affecting nail beauticians and consumers, and therefore calling for stricter regulation and preventive...
  11. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid/Kaolin Composite Superabsorbents Koroush Kabiri 2013-01-01 Full Text Available Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5% was due to polyethylene glycol diacrylate 1000 (PEGDA-1000. Then, kaolin-containing poly(potassium acrylate-acrylic acid superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated. Absorption capacity of the composite hydrogels (having ~38% kaolin was unexpectedly higher than that of kaolin-free hydrogels. This was attributed to an interfering effect of kaolin during the polymerization. Glass transition temperature was increased with crosslinker concentration enhancement and addition of kaolin up to about 10oC and 28oC, respectively. Making such K-containing superabsorbents may be taken as an effective action to achieve more durable and cheaper superabsorbents for agricultural uses.
  12. Synthesis of Poly(styrene-acrylates-acrylic acid Microspheres and Their Chemical Composition towards Colloidal Crystal Films Luis A. Ríos-Osuna 2016-01-01 Full Text Available In this paper, polystyrene colloidal microspheres have been prepared using hexyl acrylate (HA, ethylhexyl acrylate (EHA, isooctyl acrylate (IOA, butyl acrylate (BA, or isobutyl acrylate (IBA as comonomers. Microspheres with diameters from 212 to 332 nm and with a polystyrene content of 65–78% were prepared. The particles prepared in this work do not present the typical core-shell structure; as a consequence, DSC analysis showed that the microspheres exhibited only one Tg. TEM images show that the particles with comonomer content below ~30% were spherical and regular. Microspheres containing comonomer between 21 to 25% produced the less brittle films showing very iridescent colors. The films prepared from microspheres containing hexyl, ethylhexyl, and isooctyl acrylate as comonomers are firmly attached to the substrate due to their adhesive properties. The large decrease of the fragility observed in these films makes them much more attractive materials in sensing applications.
  13. Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation Energy Technology Data Exchange (ETDEWEB) Nho, Young-Chang [Radiation Application Research Division, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of)]. E-mail: [email protected]; Park, Sung-Eun [Radiation Application Research Division, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of); Kim, Hyung-Il [College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hwang, Taek-Sung [College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of) 2005-07-01 The pH-responsive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared via a two-step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto this poly(vinyl alcohol) hydrogels with subsequent irradiation (5-20 kGy). These graft hydrogels showed pH-sensitive swelling behavior. These hydrogels were used as carrier for the controlled release of insulin. The in vitro release of insulin was observed for the insulin-loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose.
  14. Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation International Nuclear Information System (INIS) Nho, Young-Chang; Park, Sung-Eun; Kim, Hyung-Il; Hwang, Taek-Sung 2005-01-01 The pH-responsive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared via a two-step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto this poly(vinyl alcohol) hydrogels with subsequent irradiation (5-20 kGy). These graft hydrogels showed pH-sensitive swelling behavior. These hydrogels were used as carrier for the controlled release of insulin. The in vitro release of insulin was observed for the insulin-loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose
  15. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications. Science.gov (United States) Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka 2016-10-01 A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates. Copyright © 2016 Elsevier B.V. All rights reserved.
  16. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions Giovanna Bosica 2016-06-01 Full Text Available Aza-Michael reactions between primary aliphatic and aromatic amines and various Michael acceptors have been performed under environmentally-friendly solventless conditions using acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile, methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the synthesis of anti-cancer and antibiotic drugs.
  17. Superabsorbent nanocomposite synthesis of cellulose from rice husk grafted poly(acrylate acid-co-acrylamide)/bentonite Science.gov (United States) Helmiyati; Abbas, G. H.; Kurniawan, S. 2017-04-01 Superabsorbent nanocomposite synthesis of cellulose rice husk as the backbone with free radical polymerization method in copolymerization grafted with acrylic acid and acrylamide monomer. The cellulose was isolated from rice husk with mixture of toluene and ethanol and then hemicellulose and lignin were removed by using potassium hydroxide 4% and hydrogen peroxide 2%. The obtained cellulose rendement was 37.85%. The functional group of lignin analyzed by FTIR spectra was disappeared at wavenumber 1724 cm-1. Crystal size of the obtained isolated cellulose analyzed by XRD diffraction pattern was 34.6 nm, indicated the nanocrystal structure. Copolymerization was performed at temperature of 70°C with flow nitrogen gas. Initiator and crosslinking agent used were potassium persulfate and N‧N-methylene-bis-acrylamide. The swelling capacity of water and urea showed the results was quite satisfactory, the maximum swelling capacity in urea and water were 611.700 g/g and 451.303 g/g, respectively, and can be applied in agriculture to absorb water and urea fertilizer.
  18. Poly(methacrylic acid)-Coated Gold Nanoparticles: Functional Platforms for Theranostic Applications. Science.gov (United States) Yilmaz, Gokhan; Demir, Bilal; Timur, Suna; Becer, C Remzi 2016-09-12 The integration of drugs with nanomaterials have received significant interest in the efficient drug delivery systems. Conventional treatments with therapeutically active drugs may cause undesired side effects and, thus, novel strategies to perform these treatments with a combinatorial approach of therapeutic modalities are required. In this study, polymethacrylic acid coated gold nanoparticles (AuNP-PMAA), which were synthesized with reversible addition-fragmentation chain transfer (RAFT) polymerization, were combined with doxorubicin (DOX) as a model anticancer drug by creating a pH-sensitive hydrazone linkage in the presence of cysteine (Cys) and a cross-linker. Drug-AuNP conjugates were characterized via spectrofluorimetry, dynamic light scattering and zeta potential measurements as well as X-ray photoelectron spectroscopy. The particle size of AuNP-PMAA and AuNP-PMAA-Cys-DOX conjugate were calculated as found as 104 and 147 nm, respectively. Further experiments with different pH conditions (pH 5.3 and 7.4) also showed that AuNP-PMAA-Cys-DOX conjugate could release the DOX in a pH-sensitive way. Finally, cell culture applications with human cervix adenocarcinoma cell line (HeLa cells) demonstrated effective therapeutic impact of the final conjugate for both chemotherapy and radiation therapy by comparing free DOX and AuNP-PMAA independently. Moreover, cell imaging study was also an evidence that AuNP-PMAA-Cys-DOX could be a beneficial candidate as a diagnostic agent.
  19. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation Science.gov (United States) Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal 2015-12-01 Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).
  20. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles Science.gov (United States) Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L. 2011-01-01 In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373
  1. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film Energy Technology Data Exchange (ETDEWEB) Prasad, G.K., E-mail: [email protected]; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer 2012-06-30 Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 Multiplication-Sign 10{sup -3} min{sup -1}. Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 Multiplication-Sign 10{sup -3} min{sup -1} due to photocatalysis. Gas chromatography-mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P-O-C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: Black-Right-Pointing-Pointer Synthesis of titania nanoparticles by sol-gel method. Black-Right-Pointing-Pointer Fabrication of titania nanoparticulate film by dip coating. Black-Right-Pointing-Pointer Paraoxon ethyl degradation reactions followed pseudo first order behaviour. Black-Right-Pointing-Pointer Paraoxon-ethyl degraded to non toxic compounds like CO{sub 2}, acetaldehyde, and nitrophenol.
  2. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption Science.gov (United States) 2011-12-14 ...This regulation establishes an exemption from the requirement of a tolerance for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2-propenoate and ethenylbenzene (CAS Reg. No. 25036-16-2); also known as butyl acrylate-methacrylic acid-styrene polymer when used as an inert ingredient in a pesticide chemical formulation. Momentive Performance Materials submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting an exemption from the requirement of a tolerance. This regulation eliminates the need to establish a maximum permissible level for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2-propenoate and ethenylbenzene on food or feed commodities.
  3. A novel collector 2-ethyl-2-hexenoic hydroxamic acid: Flotation performance and adsorption mechanism to ilmenite International Nuclear Information System (INIS) Xu, Haifeng; Zhong, Hong; Tang, Qing; Wang, Shuai; Zhao, Gang; Liu, Guangyi 2015-01-01 Graphical abstract: EHHA's synthesis route, flotation performance and coadsorption molecule–ion mechanism to ilmenite. - Highlights: • 2-Ethyl-2-hexenoic hydroxamic acid (EHHA) was synthesized and characterized. • EHHA showed stronger affinity to ilmenite. • EHHA might chemisorb onto ilmenite surfaces by form of five-membered chelates. • EHHA might adsorb onto ilmenite surfaces through molecule–ion coadsorption model. - Abstract: In this paper, a novel collector, 2-ethyl-2-hexenoic hydroxamic acid (EHHA) was prepared and characterized by elemental analysis, infrared, "1H NMR, "1"3C NMR and mass spectra. The flotation performance and adsorption mechanism of EHHA to ilmenite were investigated by micro-flotation tests, density functional theory (DFT) calculations, FTIR spectra, zeta potential and solution chemistry analyses. The micro-flotation results indicated that EHHA exhibited superior flotation performance compared to isooctyl hydroximic acid (IOHA) and octyl hydroxamic acid (OHA), and floated out 84.03% ilmenite at pH 8.0 with 250 mg/L dosage. The analyses of FTIR spectra and zeta potential demonstrated that EHHA might chemisorb onto ilmenite surfaces by form of five-membered chelates. The solution chemistry analyses further inferred that at pH 6.3–10.5, both Fe and Ti species on ilmenite surfaces could chelate EHHA. DFT calculation results implied EHHA owned the strongest affinity to ilmenite among the three C_8 hydroximic acids. To discern the sharply improving floatability of ilmenite at pH 8–10, a schematic co-adsorption molecule–ion model of EHHA on ilmenite surfaces was suggested.
  4. Immobilizing Bacillus subtilis on the carrier of poly (acrylic acid)/sodium bentonite for treating sludge from Pangasius fish ponds International Nuclear Information System (INIS) Nguyen Thanh Duoc; Doan Binh; Pham Thi Thu Hong 2016-01-01 Sodium bentonite (NaBent) was modified by poly(acrylic acid) (PAAc) to prepare the carriers for immobilization of Bacillus subtilis. Different mixtures of NaBent/AAc were regularly dispersed in distilled water and irradiated under gamma rays at an absorbed dose of 6.5 kGy with dose rate of 0.85 kGy/hr in air for polymerization of acrylic acid and formation of poly(acrylic acid)/sodium bentonite (PAAc-NaBent). The reaction yield was determined with the initial concentration of acrylic acid (AAc). The functional group properties of the resulting PAAc-NaBent were analyzed by Fourier Transform Infrared spectra (FTIR). Bacillus subtilis cells were immobilized on both NaBent and PAAc-NaBent as carriers by adsorption method for treating the sludge contaminated by fish feces and residual feed from the Pangasius farming ponds. The results showed that immobilization capacity of Bacillus subtilis on the PAAc-NaBent was better than that on non-modified NaBent. Analysis of BOD for the farming pond water containing Bacillus subtilis and the bacteria immobilized carriers with time revealed the lower BOD values obtained with the samples containing PAAc-NaBent, suggested that degradation of organic pollutants by Bacillus subtilis immobilized on the PAAc-Na Bent was faster than that by free bacteria. (author)
  5. Partial oxidation of D-xylose to maleic anhydride and acrylic acid over vanadyl pyrophosphate International Nuclear Information System (INIS) Ghaznavi, Touraj; Neagoe, Cristian; Patience, Gregory S. 2014-01-01 Xylose is the second most abundant sugar after glucose. Despite its tremendous potential to serve as a renewable feedstock, few commercial processes exploit this resource. Here, we report a new technology in which a two-fluid nozzle atomizes a xylose-water solution into a capillary fluidized bed operating above 300 °C. Xylose-water droplets form at the tip of the injector, vaporize then react with a heterogeneous mixed oxide catalyst. A syringe pump metered the solution to the reactor charged with 1 g of catalyst. Product yield over vanadyl pyrophosphate was higher compared to molybdenum trioxide-cobalt oxide and iron molybdate; it reached 25% for maleic anhydride, 17% for acrylic acid and 11% for acrolein. Gas residence time was 0.2 s. The catalyst was free of coke even after operating for 4 h – based on a thermogravimetric analysis of catalyst withdrawn from the reactor. Below 300 °C, powder agglomerated at the tip of the injector at 300 °C; it also agglomerated with a xylose mass fraction of 7% in water. - Highlights: • D-xylose reacts to form maleic anhydride and acrylic acid above 250 °C. • Vanadyl pyrophosphate is both active and selective for maleic and acrylic acid. • Acid and acrolein yield approaches 50% for a xylose mass fraction of 3% in water. • Catalyst agglomerates at low temperatures and high xylose aqueous mass fraction. • Atomization quality is a determining factor to minimize agglomeration
  6. 21 CFR 177.2260 - Filters, resin-bonded. Science.gov (United States) 2010-04-01 .... Potassium. Sodium. Triethanolamine. Fatty acid (C10-C18) mono- and diesters of polyoxyethylene glycol.... (3) Resins: Acrylic polymers produced by polymerizing ethyl acrylate alone or with one or more of the... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight...
  7. Nano-emulsion based on acrylic acid ester co-polymer derivatives as an efficient pre-tanning agent for buffalo hide OpenAIRE El-Monem, Farouk Abd; Hussain, Ahmed I.; Nashy, EL-Shahat H.A.; El-Wahhab, Hamada Abd; Naser, Abd El-Rahman M. 2014-01-01 Acrylic copolymer nanoemulsions were prepared based on methyl methacrylate (MMA) and butyl acrylate (BA). The prepared acrylic copolymer emulsions were characterized using solid content, rheological properties, molecular weight, MFFT and TEM. The prepared polymers were used as pre-tanning of the depickled hide to enhance the physico-mechanical properties of tanned leather. The key parameters which affect exhaustion and fixation of chrome tan as well as shrinkage temperature of the tanned leat...
  8. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils. Science.gov (United States) 2010-04-01 ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
  9. Hyperfine interactions of a muoniated ethyl radical in supercritical CO2 International Nuclear Information System (INIS) Cormier, Philip; Taylor, Becky; Ghandi, Khashayar 2009-01-01 A muoniated ethyl radical was studied in supercritical carbon dioxide. The muon and the proton hyperfine coupling constants were measured over temperatures ranging from 305 to 475 K, and a density range from 0.2 to 0.7 (g cm -3 ). A decrease was found in the muon hyperfine coupling constants as a function of the density, which can be attributed to the interaction between the CO 2 molecule and the p-orbital of the ethyl radical. The changes to the α-proton and β-proton hyperfine coupling constants with density are attributed to changes in the overall geometry in the formed radical. This system was modeled using quantum calculations.
  10. Carbamazepine-Fumaric Acid Co-Crystal Screening Using Solution Based Method Abd Rahim Syarifah 2016-01-01 Full Text Available Co-crystals is a multi-component system which connected by non-covalent interactions, present physically as a solid form under ambient conditions. Nowadays, co-crystal has becoming as an alternative approach to improve the bioavailability of poor water soluble drugs especially for a weakly ionisable groups or neutral compounds. In this study the co-crystal screening was carried out for carbamazepine (CBZ and fumaric acid (FUM co-crystal former (CCF using non-stoichiometric method (addition of CBZ to CCF saturated solution and stoichiometric method (evaporation of 1:1 molar ratio of CBZ to CCF in acetonitrile, ethyl acetate, propanol, ethanol and formic acid solvent systems. The crystals produced from the screening were characterized using Powder X-ray Diffraction (PXRD, Differential Scanning Calorimetry (DSC and Fourier Transform Infrared (FT-IR. The PXRD analysis had confirmed that the co-crystal was successfully formed in both methods for all of the solvent system studied with an exception to formic acid in the stoichiometric method where no crystal was found precipitate. The findings from this study revealed that Form A and Form B of CBZ-FUM co-crystal had been successfully formed from different solvent systems.
  11. Feasibility of CBCT dosimetry for IMRT using a normoxic polymethacrylic-acid gel dosimeter Science.gov (United States) Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min 2013-09-01 The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.
  12. Polarographic determination of stability constants of Eu(III) complexes with acrylic and crotonic acid Energy Technology Data Exchange (ETDEWEB) Rao, A L.J.; Singh, Makhan [Punjabi Univ., Patiala (India). Dept. of Chemistry 1979-07-01 Compositions and formation constants of Eu(III) complexes with acrylic acid and crotonic acid have been studied polarographically. The reductions are reversible and diffusion-controlled. The plot of Esub(1/2) versus--log Csub(x) is linear in the case of Eu(III)-acrylic acid system. The change in number of ligands bound to europium during reduction was found to be approximately 1 and ratio of dissociation constants of Eu(III) and Eu(II) was found to be 40.76X10sup(-2). In the case of Eu(III)-crotonic acid system, composition and formation constants have been calculated by the method of Deford and Hume. Crotonic acid forms two complex species with europium (..beta../sub 1/,60; ..beta../sub 2/, 4.2x10sup(+2)). The percentage distribution of various complex species as a function of ligand concentration has been calculated in the case of Eu(III)-crotonic acid system. A polarographic method for the determination of micro amounts of Eu(III) in the presence of diverse ions has been developed. Under optimum conditions Eu(III) in the concentration range 4x19sup(-4)-2x10sup(-2)M can be successfully determined in various mixtures.
  13. Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study. Science.gov (United States) 2008-12-01 To determine whether ethyl-eicosapentaenoic acid (ethyl-EPA), an omega-3 fatty acid, improves the motor features of Huntington disease. Six-month multicenter, randomized, double-blind, placebo-controlled trial followed by a 6-month open-label phase without disclosing initial treatment assignments. Forty-one research sites in the United States and Canada. Three hundred sixteen adults with Huntington disease, enriched for a population with shorter trinucleotide (cytosine-adenine-guanine) repeat length expansions. Random assignment to placebo or ethyl-EPA, 1 g twice a day, followed by open-label treatment with ethyl-EPA. Six-month change in the Total Motor Score 4 component of the Unified Huntington's Disease Rating Scale analyzed for all research participants and those with shorter cytosine-adenine-guanine repeat length expansions (<45). At 6 months, the Total Motor Score 4 point change for patients receiving ethyl-EPA did not differ from that for those receiving placebo. No differences were found in measures of function, cognition, or global impression. Before public disclosure of the 6-month placebo-controlled results, 192 individuals completed the open-label phase. The Total Motor Score 4 change did not worsen for those who received active treatment for 12 continuous months compared with those who received active treatment for only 6 months (2.0-point worsening; P=.02). Ethyl-EPA was not beneficial in patients with Huntington disease during 6 months of placebo-controlled evaluation. Clinical Trial Registry clinicaltrials.gov Identifier: NCT00146211.
  14. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties International Nuclear Information System (INIS) Park, S.-E.; Nho, Y.-C.; Kim, H.-I. 2004-01-01 The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2
  15. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL. Science.gov (United States) Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid 2016-01-01 A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.
  16. Synthesis of ion exchange membrane by radiation grafting of acrylic acid onto polyethylene International Nuclear Information System (INIS) Ishigaki, I.; Sugo, T.; Senoo, K.; Takayama, T.; Machi, S.; Okamoto, J.; Okada, T. 1981-01-01 Radiation grafting of vinyl monomers onto polymer films has been extensively studied by many workers. In the preirradiation method of grafting a polymer substrate is activated by irradiation (either in the presence or absence of oxygen) and subsequently allowed to react with a monomer. The preirradiation method was utilized in this study to synthesize an ion exchange membrane useful for a battery separator by grafting acrylic acid onto polyethylene film. The battery separator should be chemically and thermally stable, sufficiently durable in electrolyte as well as highly electrically conductive. Membranes made from regenerated cellulose, e.g., cellophane, have long been used as a separator in the batteries with alkaline electrolyte, such as silver oxide primary cell. However, it has poor durability, as short as one year, due to breakdown of the membrane during operation or storing. The acrylic acid-grafted polyethylene film was found to be quite useful for a separator in the alkaline batteries. This membrane has a high electric conductivity and an excellent durability. (author)
  17. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid) DEFF Research Database (Denmark) Javakhishvili, Irakli; Hvilsted, Søren 2009-01-01 ) of tent-butyl acrylate (tBA) in a controlled fashion by use of NiBr2(PPh3)(2) catalyst to produce Prot-PCL-b-PtBA with narrow polydispersities (1.17-1.39). Subsequent mild deprotection protocols provided HS-PCL-b-PAA. Reduction of a gold salt in the presence of this macroligand under thiol......Amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) with a thiol functionality in the PCL terminal has been prepared in a novel synthetic cascade. Initially, living anionic ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) employing the difunctional...
  18. Alcohol consumption and synthesis of ethyl esters of fatty acids in adipose tissue NARCIS (Netherlands) Björntorp, P; Depergola, G; Sjöberg, C; Pettersson-Kymmer, U.; Hallgren, P; Boström, K; Helander, K G; Seidell, J 1990-01-01 Ethyl esters of fatty acids (EEFA) have been found to be formed during ethanol metabolism. Human adipose tissue contains high concentrations of free fatty acids, the substrate for EEFA synthesis, and might therefore be a tissue with great potential for EEFA formation. In order to explore their
  19. Polymethacrylate-based monoliths as stationary phases for separation of biopolymers and immobilization of enzymes. Science.gov (United States) Martinović, Tamara; Josić, Djuro 2017-11-01 The experiences in the production and application of polymethacrylate-based monolithic supports, since their development almost thirty years ago, are presented. The main driving force for the development of new chromatographic supports was the necessity for the isolation and separation of physiologically active biopolymers and their use for therapeutic purposes. For this sake, a development of a method for fast separation, preventing denaturation and preserving their biological activity was necessary. Development of polysaccharide-based supports, followed by the introduction of polymer-based chromatographic media, is shortly described. This development was followed by the advances in monolithic media that are now used for both large- and small-scale separation of biopolymers and nanoparticles. Finally, a short overview is given about the applications of monoliths for sample displacement chromatography, resulting in isolation of physiologically active biomolecules, such as proteins, protein complexes, and nucleic acid, as well as high-throughput sample preparation for proteomic investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  20. Electrospinning of Poly (MMA-CO-Maa) Copolymers And Their Layered Silicate Nanocomposites For Improved Thermal Properties Science.gov (United States) 2004-12-01 7518. Ho, B.C., Lee, Y.D. and Chin, W.K., 1992: Thermal Degradation of Polymethacrylic Acid , J. Polym. Sci., Polymer Chemistry, 30, 2389-2397. Lee...AMSRD-ARL-WM-MD Aberdeen Proving Ground, MD 21005-5069 ABSTRACT Copolymers consisting of methyl methacrylate (MMA) and methacrylic acid (MAA...from solution of poly (MMA-co-MAA) copolymer (50/50 weight ratio of MMA and methacrylic acid , MAA) in dimethylformamide (DMF) and the corresponding
  1. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation Energy Technology Data Exchange (ETDEWEB) Barleany, Dhena Ria, E-mail: [email protected]; Ulfiyani, Fida; Istiqomah, Shafina; Rahmayetty [Department of Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon, Banten (Indonesia); Heriyanto, Heri; Erizal [Centre for Application of Isotopes and Radiation, Jakarta (Indonesia) 2015-12-29 Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)
  2. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid Science.gov (United States) Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye 2011-02-01 Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.
  3. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid Energy Technology Data Exchange (ETDEWEB) Deng Bo [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Yu Yang; Zhang Bowu; Yang Xuanxuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Graduate University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan Dist., 100049 Beijing (China); Li Linfan; Yu Ming [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Li Jingye, E-mail: [email protected] [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China) 2011-02-15 Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.
  4. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid International Nuclear Information System (INIS) Deng Bo; Yu Yang; Zhang Bowu; Yang Xuanxuan; Li Linfan; Yu Ming; Li Jingye 2011-01-01 Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.
  5. Amino acids and glycine ethyl ester as new crystallization reagents for lysozyme International Nuclear Information System (INIS) Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi 2010-01-01 During the past two decades, amino acids and amino-acid derivatives have been applied in various fields of protein chemistry. The potential use of amino acids and their derivatives as new precipitating agents is described. Several amino acids and their derivatives are prominent additives in the field of protein chemistry. This study reports the use of charged amino acids and glycine ethyl ester as precipitants in protein crystallization, using hen egg-white lysozyme (HEWL) as a model. A discussion of the crystallization of HEWL using these reagents as precipitating agents is given
  6. Synthesis of ethyl [14CH3]methylmalonyl thioglycolate as a possible substrate analogue of [14CH3]methylmalonyl coenzyme-A International Nuclear Information System (INIS) Kovacs, I.; Kovacs, Z. 1991-01-01 Ethyl methylmalonyl thioglycolate is a potential substrate analogue of methylmalonyl-coenzyme-A (methylmalonyl-CoA) in the investigation of propionic acid metabolism. To prove this hypothesis, the tracer ethyl [ 14 CH 3 ] methylmalonyl thioglycolate was synthesized via methyl-Meldrum's acid to carry out the biochemical examinations. The method described can also be used to synthesize [ 14 CH 3 ] methylmalonyl-CoA by transesterification of active labelled methylmalonyl thiophenyl ester. This latter intermediate is chemically stable when stored at room temperature, and the unstable [ 14 CH 3 ]methylmalonyl-CoA can be prepared in one step just preceeding the biochemical experiments. (author)
  7. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium Energy Technology Data Exchange (ETDEWEB) Midori de Oliveira, Fernanda; Gava Segatelli, Mariana [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Tarley, César Ricardo Teixeira, E-mail: [email protected] [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Departamento de Química Analítica, Cidade Universitária Zeferino Vaz s/n, CEP 13083-970 Campinas, SP (Brazil) 2016-02-01 In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium (pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. - Highlights: • The molecularly imprinted hybrid polymer showed high adsorption capacity for folic acid. • The molecularly imprinted hybrid polymer showed high selectivity for folic acid. • The molecularly imprinted hybrid polymer modified with GPTMS excludes higher amount of BSA.
  8. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution Nitri Arinda 2009-04-01 Full Text Available Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the experiment closed to its theoretical value.The optimum condition then could be applied in shell polymerization of core-shell polymers. The results of the researchshowed that semicontinuous technique obtained optimum sodium lauryl sulfate concentration at 20 CMC (criticalmicelle concentration and ammonium persulfate concentration is 3%. By using batch technique that the biggestparticle size is 123 nm with conversion 95.8% and monodisperse. The shorter of feeding time the more monomer ofethyl acrylate being polymerized, it is showed by the higher conversion up to 94.4% and the bigger particle size is107.9 nm.
  9. Influence of the solvents on the γ-ray polymerization of acrylic acid. II International Nuclear Information System (INIS) Laborie, F. 1977-01-01 The presence of plurimolecular H-bonded aggregates in the acrylic acid allows the polymer to involve some stereoregular sequences. This effect is made easier when some polymer is already formed in the reacting medium: the aggregates are stabilized by hydrogen bonds with the polymer which gives rise to a matrix effect. Two groups of solvents have been characterized by examination of the monomer's association forms in solution. In a first group of solvents (methanol--dioxan--water), the aggregates are maintained and reinforced; in the second one, acrylic acid exists only as cyclic dimers (hydrocarbons--chlorinated solvents). The difference between the association forms of the monomer involves some important modifications on the kinetics of polymerization and the structure of the obtained polymers. In the solvents of the first group, the obtained polymers are crystallizable and may involve syndiotactic sequences, while in the presence of the solvents of the second group no crystallization or stereoregularity of the polymer can occur. A very close correlation is thus found between the aggregated structure of the monomer, the polymerization kinetics, and the structure of the polymers
  10. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives. Science.gov (United States) Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K 2014-02-18 Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.
  11. Acrylic acid grafted PDMS preliminary activated by Ar{sup +}beam plasma and cell observation Energy Technology Data Exchange (ETDEWEB) Kostadinova, A.; Zaekov, N. [Institute of Biophysics, BAS, Sofia (Bulgaria); Keranov, I. [Department of Polymer Engineering, University of Chemical Technology and Metallurgy (UCTM), Sofia (Bulgaria) 2007-07-01 Plasma based Ar{sup +} beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar{sup +}beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or ba resurfaces. The cell response seem sto be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar{sup +} beam treatment followed or not by AA grafting. Key words: Biomaterials; Surface treatment of PDMS; Plasma based Ar{sup +} beam; Acrylic acid grafting; Fibroblast cells.
  12. Graft copolymerization of N-maleoyl-N-phthaloyl-chitosan (MAPHCS) and acrylic acid via γ-ray irradiation International Nuclear Information System (INIS) Mu Qing; Fang Yue'e 2006-01-01 Chitosan is a well-known abundant natural polymer with good biodegradability, biocompatibility and bioactivity. But its insolubility in common organic solvents of chitosan have hindered its utilization and basic research. N-maleoyl-N-phthaloyl-chitosan (MAPHCS), soluble in DMF or DMSO, was synthesized and characterized by Fourier transform infrared spectra analysis (FT-IR) and 1 H-NMR. The graft copolymerization of acrylic acid onto chitosan was carried out with N-maleoyl-N-phthaloyl-chitosan as intermediate in homogeneous system and initiated by γ-irradiation. The double bond of MAPHCS may be the grafting site because the grafting field was much higher than that of the graft copolymerization of acrylic acid and phthaloylchitosan via γ-ray irradiation. The chemical structure of the graft copolymer was characterized by FT-IR and 1 H-NMR. As indicated in FTIR spectra, the evidence of the stronger absorbance at 2800-3000 cm -1 for C-H and at 1720 cm -1 for carboxyl group implied significantly the successful introduction of the poly (acrylic acid) on the chitosan chain. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were also used to characterize the copolymer. Effects of synthesis variables on the graft copolymerization were studied in light of the grafting percentage. The grafting percentage increased with the dose at lower doses, and then decreased. The maximum grafting percentage was up to 132%. (authors)
  13. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers Science.gov (United States) Pisipati, Padmapriya Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly(acrylonitrile-co
  14. (Meth)Acrylate Occupational Contact Dermatitis in Nail Salon Workers: A Case Series. Science.gov (United States) DeKoven, Samuel; DeKoven, Joel; Holness, D Linn Recently, many cases of acrylate-associated allergic contact dermatitis have appeared among nail salon workers. Common acrylate-containing products in nail salons include traditional nail polish, ultraviolet-cured shellac nail polish, ultraviolet-cured gel nails, and press-on acrylic nails. Nail salon technicians seen in the occupational medicine clinic in 2015 and 2016 were identified, and their patch test results and clinical features were summarized. Patch testing was done with the Chemotechnique (Meth)Acrylate nail series, and either the North American Standard series or the North American Contact Dermatitis Group screening series. Six patients were identified, all women, ages 38 to 58. Common presentations included erythematous dermatitis of the dorsa of the hands, palms, and forearms and fissures on the fingertips. Less common sites of eruptions included the periorbital region, cheeks, posterior ears, neck, sacral area, lateral thighs, and dorsa of the feet. All patients reacted to hydroxyethyl methacrylate, and 5 patients reacted to ethyl acrylate. Each patient also reacted to (meth)acrylates that are not found on either standard series, including ethyleneglycol dimethacrylate, 2-hydroxypropyl methacrylate, and 2-hydroxyethyl acrylate. The authors report 6 cases of allergic contact dermatitis to acrylates in nail technicians seen over the past year, representing a new trend in their clinic. These cases are reflective of a growing trend of nail technicians with allergic contact dermatitis associated with occupational (meth)acrylate exposure. Efforts to improve prevention are needed.
  15. Water absorbency of chitosan grafted acrylic acid hydrogels Science.gov (United States) Astrini, N.; Anah, L.; Haryono, A. 2017-07-01 Acrylic acid (AA) monomer was directly grafted onto chitosan (CTS) using potassium persulfate (KPS) as an initiator and methylenebisacrylamide (MBA) as a crosslinking agent under an inert atmosphere. One factor affecting the swelling capacity of the obtained hydrogel, KPS concentration, were studied. The hydrogel products were characterized using Fourier Transform Infrared spectroscopy (FTIR) for chemical structure and scanning electron microscopy (SEM) for morphology. Swelling of the hydrogel samples in distilled water and saline solution ( 9% NaCl ) was examined. Swelling capacity of the CTS-g-PAA hydrogels in distilled water (88.53 g/g) was higher than in NaCl solution (29.94 g/g) The highest swelling capacity value was obtained when the grafted reaction was carried out using 2.5wt% initiator
  16. Hyperfine interactions of a muoniated ethyl radical in supercritical CO{sub 2} Energy Technology Data Exchange (ETDEWEB) Cormier, Philip; Taylor, Becky [Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G8 (Canada); Ghandi, Khashayar, E-mail: [email protected] [Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G8 (Canada) 2009-04-15 A muoniated ethyl radical was studied in supercritical carbon dioxide. The muon and the proton hyperfine coupling constants were measured over temperatures ranging from 305 to 475 K, and a density range from 0.2 to 0.7 (g cm{sup -3}). A decrease was found in the muon hyperfine coupling constants as a function of the density, which can be attributed to the interaction between the CO{sub 2} molecule and the p-orbital of the ethyl radical. The changes to the alpha-proton and beta-proton hyperfine coupling constants with density are attributed to changes in the overall geometry in the formed radical. This system was modeled using quantum calculations.
  17. Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization International Nuclear Information System (INIS) Mu Bin; Zhao Mingfei; Liu Peng 2008-01-01 Halloysite nanotubes (HNTs) grafted hyperbranched polymers were prepared by the self-condensing vinyl polymerization (SCVP) of 2-((bromoacetyl)oxy)ethyl acrylate (BAEA) and the self-condensing vinyl copolymerization of n-butyl acrylate (BA) and BAEA with BAEA as inimer (AB*) respectively, from the surfaces of the 2-bromoisobutyric acid modified halloysite nanotubes (HNTs-Br) via atom transfer radical polymerization (ATRP) technique. The halloysite nanotubes grafted hyperbranched polymer (HNTs-HP) and the halloysite nanotubes grafted hyperbranched copolymer (HNTs-HCP) were characterized by elemental analysis (EA), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscope (TEM). The grafted hyperbranched polymers were characterized with Nuclear magnetic resonance (NMR) and the molecular ratio between the inimer AB* and BA in the grafted hyperbranched copolymers was found to be 3:2, calculated from the TGA and EA results
  18. Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization Energy Technology Data Exchange (ETDEWEB) Mu Bin; Zhao Mingfei; Liu Peng [Lanzhou University, State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering (China)], E-mail: [email protected] 2008-05-15 Halloysite nanotubes (HNTs) grafted hyperbranched polymers were prepared by the self-condensing vinyl polymerization (SCVP) of 2-((bromoacetyl)oxy)ethyl acrylate (BAEA) and the self-condensing vinyl copolymerization of n-butyl acrylate (BA) and BAEA with BAEA as inimer (AB*) respectively, from the surfaces of the 2-bromoisobutyric acid modified halloysite nanotubes (HNTs-Br) via atom transfer radical polymerization (ATRP) technique. The halloysite nanotubes grafted hyperbranched polymer (HNTs-HP) and the halloysite nanotubes grafted hyperbranched copolymer (HNTs-HCP) were characterized by elemental analysis (EA), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscope (TEM). The grafted hyperbranched polymers were characterized with Nuclear magnetic resonance (NMR) and the molecular ratio between the inimer AB* and BA in the grafted hyperbranched copolymers was found to be 3:2, calculated from the TGA and EA results.
  19. Synthesis and characterization of poly(acrylic acid)-g-sodium alginate hydrogel initiated by gamma irradiation for controlled release of chlortetracycline HCl International Nuclear Information System (INIS) Mohamed, S.F.; Mahmoud, G.A.; Taleb, M.F.A. 2013-01-01 pH-Sensitive hydrogel was synthesized by gamma radiation crosslinking for sodium alginate extracted from the marine brown alga Turbinaria decurrens and acrylic acid. Preparation of the hydrogels involved free radical polymerization of a combination of acrylic acid (w = 0.2) and different contents of sodium alginate (w = 0.05, 0.10, and 0.15) in aqueous solution using gamma rays of a 60 Co source at an irradiation dose rate of 1.2 kGy/h. The swelling behavior of the prepared hydrogel was determined by investigating the swelling time, pH of medium, and alginate content in the hydrogel. The results showed that the hydrogel reached the equilibrium swelling state in water after 6 h. The hydrogel was found to be pH responsive. The drug loading and in vitro release properties of the hydrogel were also evaluated using chlortetracycline hydrochloride as the model drug. The adsorption isotherm studies by batching techniques under the effect of different initial feed concentrations of drug, different pH values, and different sodium alginate content of the adsorbent hydrogel were investigated. The diffusion of chlortetracycline hydrochloride within the hydrogel was found to be of non-Fickian character. The kinetic parameters such as the diffusion exponent, diffusion constant, and diffusion coefficient were also evaluated. (author)
  20. Molecular aggregation states of poly{l_brace}2-(perfluorooctyl)ethyl acrylate{r_brace} polymer brush thin film analyzed by grazing incidence X-ray diffraction Energy Technology Data Exchange (ETDEWEB) Yamaguchi, H; Honda, K; Takahara, A [Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Kobayashi, M [Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Morita, M [Fundamental Research Department, Chemical Division, Daikin Industries, Ltd., 1-1 Nishi Hitotsuya, Settsu-shi, Osaka 566-8585 (Japan); Masunaga, H; Sasaki, S; Takata, M [Japan Synchrotron Research Institute, Mikazuki Sayo, Hyogo 671-5198 (Japan); Sakata, O, E-mail: [email protected] [RIKEN Harima Institute, Mikazuki Sayo, Hyogo 671-5198 (Japan) 2009-08-01 Fluoropolymer brush with crystalline side chains was prepared by surface-initiated atom transfer radical polymerization of 2-(perfluorooctyl)ethyl acrylate (FA-C{sub 8}) from a flat silicon substrate. The crystallization and the molecular aggregation structures of polymer side chain at the outermost surface and internal region in the brush film were characterized by grazing incidence X-ray diffraction (GIXD) measurement using two different incident angles of X-ray. At the air interface of PFA-C{sub 8} brush film, the rod-like R{sub f} group was oriented perpendicular to the surface forming a hexagonal packing structure to reduce surface energy. In contrast, the oriented R{sub f} groups parallel to the substrate coexisted at the internal region in the brush. This unique depth dependence of crystalline state of the fluoropolymer brush was observed by surface-sensitive GIXD measurement.
  1. 21 CFR 181.30 - Substances used in the manufacture of paper and paperboard products used in food packaging. Science.gov (United States) 2010-04-01 ... cyanodithioimidocarbamate with ethylene diamine and potassium N-methyl dithiocarbamate and/or sodium 2-mercaptobenzothiazole (slimicides).* Ethyl acrylate and methyl methacrylate copolymers of itaconic acid or methacrylic acid for use... acid (polymerized). Melamine formaldehyde polymer. Methyl acrylate (polymerized). Methyl ethers of mono...
  2. A study on the effect of the concentration of N,N-methylenebisacrylamide and acrylic acid toward the properties of Dioscorea hispida-starch-based hydrogel Science.gov (United States) Ashri, Airul; Lazim, Azwan 2014-09-01 The research investigated the effects of acrylic acid (monomer) and N,N,-methylenebisacrylamide, MBA (crosslinker) toward the percentage of gel content, swelling ratio and ionic strength of a starch-based hydrogel. Starch grafted on poly (sodium acrylate), St-g-PAANa hydrogel was prepared by incorporating starch extracted from Dioscorea hispida in NaOH/aqueous solution using different composition of acrylic acid (AA) and N,N-methylenebisacrylamide (MBA) in the presence of potassium persulfate (KPS) as chemical initiator. The highest gel content was observed at 1:30 ratio of starch to AA and 0.10 M of MBA. Results showed the highest swelling ratio was observed at 1:15 ratio of starch to acrylic acid and 0.02 M of MBA solution. The same results also gave the highest swelling ratio for the ionic strength study. The FTIR analysis was also conducted in order to confirm the grafting of AA onto starch backbone.
  3. Extraction of domoic acid from seawater and urine using a resin based on 2-(trifluoromethyl)acrylic acid. Science.gov (United States) Piletska, Elena V; Villoslada, Fernando Navarro; Chianella, Iva; Bossi, Alessandra; Karim, Kal; Whitcombe, Michael J; Piletsky, Sergey A; Doucette, Gregory J; Ramsdell, John S 2008-03-03 A new solid-phase extraction (SPE) matrix with high affinity for the neurotoxin domoic acid (DA) was designed and tested. A computational modelling study led to the selection of 2-(trifluoromethyl)acrylic acid (TFMAA) as a functional monomer capable of imparting affinity towards domoic acid. Polymeric adsorbents containing TFMAA were synthesised and tested in high ionic strength solutions such as urine and seawater. The TFMAA-based polymers demonstrated excellent performance in solid-phase extraction of domoic acid, retaining the toxin while salts and other interfering compounds such as aspartic and glutamic acids were removed by washing and selective elution. It was shown that the TFMAA-based polymer provided the level of purification of domoic acid from urine and seawater acceptable for its quantification by high performance liquid chromatography-mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) without any additional pre-concentration and purification steps.
  4. Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel Science.gov (United States) Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal 2018-03-01 A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.
  5. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers. Science.gov (United States) Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves 2006-02-14 Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.
  6. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions. Science.gov (United States) He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M 2012-01-01 In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).
  7. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption International Nuclear Information System (INIS) Benamer, S.; Mahlous, M.; Tahtat, D.; Nacer-Khodja, A.; Arabi, M.; Lounici, H.; Mameri, N. 2011-01-01 Radiation-induced grafting of acrylic acid onto chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of cobalt-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted material was performed by FTIR spectroscopy and the swelling measurements at different pHs. The grafting yield increased with the increase in dose, it reached 80% at 40 kGy irradiation dose. The removal of Pb and Cd ions from aqueous solutions was investigated with both ungrafted and grafted chitosan beads. The sorption behavior of the sorbents was examined through pH, kinetics and equilibrium measurements. Grafted chitosan beads presented higher sorption capacity for both metal ions than unmodified chitosan beads. - Highlights: → Pb and Cd ions are removed from aqueous solution by adsorption on chitosan beads. → Crosslinking process improves chemical stability of chitosan beads. → Radiation grafting of acrylic acid onto chitosan improves its metal adsorption capacity. → Increase in grafting degree enhances the adsorption capacity of the material. → Gamma radiation is a powerful tool for an accurate control of the grafting yield.
  8. [The influence of polymerization time on physicochemical properties of the acrylic resin Vertex RS]. Science.gov (United States) Fraczak, Bogumiła; Sobolewska, Ewa; Ey-Chmielewska, Halina; Skowronek, Maria; Błazewicz, Stanisław 2009-01-01 A good denture can only be produced through proper actions during the clinical and laboratory stages of the production process. The aim of this study was to determine if a change in polymerization time affects the physicochemical properties of polymethacrylate material used for dentures. We examined the acrylic resin Vertex R.S. polymerized for 15, 25, 40, or 60 minutes. Palapress Vario was taken as reference material. Static bending, microhardness, surface wettability, and susceptibility to abrasion were determined. The microhardness test showed that most of the samples had similar Vickers hardness (VS) values, except for the sample polymerized for 25 min. which demonstrated a significantly higher value. Grindability was affected by a change in polymerization time. Mass loss was greatest for samples polymerized for 15, 25, and 60 min. and smallest for Vertex 40 and Palapress Vario. We also observed differences in the wetting angle. Vertex 40 and 60 had a relatively low wetting angle signifying that longer polymerization time results in lower hydrophobicity of the material. The present study has demonstrated that polymerization time has a significant effect on the hardness and some mechanical properties of the acrylic resin.
  9. Rheological Behavior of Reaction Mixtures during the Graft Copolymerization of Cassava Starch with Acrylic Acid NARCIS (Netherlands) Witono, J.R.; Noordergraaf, Inge; Heeres, Hero; Janssen, L.P.B.M. 2017-01-01 Literature data on the rheological behavior of a reaction mixture during the graft copolymerization of acrylic acid onto gelatinized starch are scarce. Yet, such information is important for process design. In this work, continuous torque recording was found to be a suitable method to monitor the
  10. Spectroscopic and density functional theory studies of trans-3-(trans-4-imidazolyl)acrylic acid. Science.gov (United States) Arjunan, V; Remya, P; Sathish, U; Rani, T; Mohan, S 2014-08-14 The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry of trans-3-(trans-4-imidazolyl)acrylic acid have been determined from B3LYP methods with 6-311++G(**) and cc-pVTZ basis sets. The effects of substituents (acrylyl group) on the imidazole vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of trans-3-(trans-4-imidazolyl)acrylic acid have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. (1)H and (13)C NMR isotropic chemical shifts are calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound are also determined from DFT method. The total electron density and electrostatic potential of the compound are determined by natural bond orbital analysis. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities employing natural population analysis (NPA) are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
  11. Analysis and Testing of Bisphenol A-Free Bio-Based Tannin Epoxy-Acrylic Adhesives OpenAIRE Jahanshahi , Shayesteh; Pizzi , Antonio; Abdulkhani , Ali; Shakeri , Alireza 2016-01-01 International audience; A tannin-based epoxy acrylate resin was prepared from glycidyl ether tannin (GET) and acrylic acid. The influence of the reaction condition for producing tannin epoxy acrylate was studied by FT-MIR, C-13-NMR, MALDI-TOF spectroscopy and shear strength. The best reaction conditions for producing tannin epoxy acrylate resin without bisphenol A was by reaction between GET and acrylic acid in the presence of a catalyst and hydroquinone at 95 degrees C for 12 h. FT-MIR, C-13...
  12. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants International Nuclear Information System (INIS) Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il 2013-01-01 Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO 2 and graphene oxide. Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO 2 /graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO 2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 nanocomposite hydrogels. Both TiO 2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO 2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water
  13. Effect of acid additives on graft copolymerization and water absorption of graft copolymers of cassava starch and acrylamide/acrylic acid International Nuclear Information System (INIS) Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit 2003-01-01 Gelatinized cassava starch was radiation graft copolymerized with acrylamide or acrylic acid in the presence of sulfuric acid, nitric acid or maleic acid at a specific dose rate to a fixed total dose. Homopolymer or free copolymer was extracted by water to obtain the pure graft copolymer, which was subsequently saponified with 5% potassium hydroxide solution at room temperature for 90 min. The saponified graft copolymer was investigated for the effect of acid additives and water absorption. The addition of 2% maleic acid into the grafting reaction containing acrylamide-to-starch ratio of 2.5:1 can produce the superabsorbent copolymer having water absorption as high as 2,256 ± 25 g g -1 . The effect of acid additive was explained. (author)
  14. 77 FR 61600 - Certain New Chemicals; Receipt and Status Information Science.gov (United States) 2012-10-10 ... (G) Additive..... (G) Alkenoic acid, polymers with acrylate and polyalkandiol alkane ether alkyl..., polymer with alkyl acrylate, alkyl acrylate. P-12-0236 08/21/2012 08/20/2012 (G) Polyester amine adduct. P...]ethyl]carbamate and 2-propanol, potassium salt, peroxydisulfuric acid ([(HO)s(O)2]2O2) sodium salt (1:2...
  15. Synthesis and self-assembly of amphiphilic poly(acrylicacid)-poly(ɛ-caprolactone)-poly(acrylicacid) block copolymer as novel carrier for 7-ethyl-10-hydroxy camptothecin. Science.gov (United States) Djurdjic, Beti; Dimchevska, Simona; Geskovski, Nikola; Petrusevska, Marija; Gancheva, Valerya; Georgiev, Georgi; Petrov, Petar; Goracinova, Katerina 2015-01-01 The process of molecular self-assembly plays a crucial role in formulation of polymeric nanoparticulated drug delivery carriers as it creates the possibility for enhanced drug encapsulation and carrier surface engineering. This study aimed to develop a novel self-assembled polymeric micelles for targeted delivery in tumor cells in order to overcome not only various drawbacks of 7-ethyl-10-hydroxy camptothecin (SN-38) but also various reported limitations of other drug delivery systems, especially low drug loading and premature release. Custom synthesized amphiphilic triblock copolymer poly(acrylic acid)-poly(ɛ-caprolactone)-poly(acrylic acid) (PAA(13)-PCL(35)-PAA(13)) was used to prepare kinetically stable micelles by nanoprecipitation and modified nanoprecipitation procedure. Core-shell micelles with diameter of 120-140 nm, negative zeta potential and satisfactory drug loading were produced. The prepared formulations were stable in pH range of 3-12 and in media with NaCl concentration calorimetry analyses confirmed the entrapment of the active substance into the micelles. The kinetic analysis of dissolution studies revealed that the main mechanism of drug release from the prepared formulations is Fickian diffusion. Growth inhibition studies as well as DNA fragmentation assay performed on SW-480 cell lines clearly demonstrated increased growth inhibition effect and presence of fragmented DNA in cells treated with loaded micelles compared to SN-38 solution. Altogether, these results point out to potential biomedical and clinical application of PAA-PCL-PAA systems in the future. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
  16. Investigation of crafting polymerization of acrylic acid to cellulose materials under the action of accelerated electrons International Nuclear Information System (INIS) Valiev, A.; Bazhenov, L.G.; Asamov, M.K.; Sagatov, Eh.A. 1996-01-01 Crafting polymerization of acrylic acid (AA) to cellulose materials in the presence of copper, zinc and silver salts under the action of accelerated electrons has been investigated with the aim to attach anti microbe properties to these materials. (author). 2 refs., 1 tab
  17. Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives. Science.gov (United States) Simula, Alexandre; Anastasaki, Athina; Haddleton, David M 2016-02-01 The synthesis of hydrophilic, thermoresponsive, and zwitterionic polymethacrylates is reported by Cu(0)-mediated reversible deactivation radical polymerization in water and/or water/alcohol mixtures. The predisproportionation of [Cu(I) (PMDETA)Cl] in water prior to initiator and monomer addition is exploited to yield well-defined polymethacrylates with full monomer conversions in 30 min. The addition of supplementary halide salts (NaCl) enables the synthesis of various molecular weight poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA475) (DPn = 10-80, Mn ≈ 10,000-40 000 g mol(-1)) with full monomer conversion and narrow molecular weight distributions attained in all cases (Đ ≈ 1.20-1.30). A bifunctional PEG initiator (average Mn ≈ 1000 g mol(-1)) is utilized for the polymerization of a wide range of methacrylates including 2-dimethylaminoethyl methacrylate, 2-morpholinoethyl methacrylate, [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, and 2-methacryloyloxyethyl phosphorylcholine. Despite the high water content, high end group fidelity is demonstrated by in situ chain extensions and block copolymerizations with PEGMA475 yielding well-defined functional telechelic pentablock copolymers within 2.5 h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  18. Preparation of poly (styrene)-b-poly (acrylic acid)/{gamma}-Fe{sub 2}O{sub 3} composites Energy Technology Data Exchange (ETDEWEB) Zhang, L.D. [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Liu, W.L., E-mail: [email protected] [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Xiao, C.L.; Yao, J.S.; Fan, Z.P.; Sun, X.L.; Zhang, X.; Wang, L. [School of Materials Science and Engineering, Shandong Polytechnic University, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong Province, Daxue Road, Western University Science Park, Jinan 250353 (China); Wang, X.Q. [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China) 2011-12-15 The use of a block copolymer, poly (styrene)-b-poly (acrylic acid) (PS-b-PAA) to prepare a magnetic nanocomposite was investigated. Poly (styrene)-poly (t-butyl acrylate) block copolymer, being synthesized by atom transfer radical polymerization, was hydrolyzed with hydrochloric acid for obtaining PS-b-PAA. The obtained PS-b-PAA was then compounded with the modified {gamma}-Fe{sub 2}O{sub 3}, and subsequently the magnetic nanocomposite was achieved. The products were characterized by {sup 1}H NMR, FTIR, gel permeation chromatography, thermogravimetric analysis, transmission electron microscopy and vibrating sample magnetometer. The results showed that the nanocomposites exhibited soft magnetism, with the mean diameter of 100 nm approximately. - Highlights: > Magnetic composites were prepared using {gamma}-Fe{sub 2}O{sub 3} and PS-b-PAA. > PS-b-PAA was synthesized by atom transfer radical polymerization. > The obtained composite exhibited soft magnetism.
  19. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin. Science.gov (United States) Ekren, Orhun; Ozkomur, Ahmet 2016-08-01 The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials.
  20. FATTY ACID ETHYL ESTERS FROM MICROALGAE OF Scenedesmus ecornis BY ENZYMATIC AND ACID CATALYSIS Gabryelle F. de Almeida Full Text Available Microalgae are an indispensable food source for the various growth stages of mollusks, crustaceans, and several fish species. Using a microalgae biomass present in the Amazonian ecosystem (Macapá-AP, we study extraction methods for fatty acid such as solvent extraction (magnetic stirring and/or Soxhlet and/or hydrolysis (acid and/or enzymatic catalysis followed by esterification and/or direct transesterification. Extraction of crude triacylglycerides by mechanical stirring at room temperature was more efficient than continuous reflux (Soxhlet. Subsequently, the lipid extract was subject to transesterification with ethanol and CAL-B as a biocatalyst, leading to production of fatty acid ethyl esters (FAEE. Additionally, FAEEs were prepared by hydrolysis of crude triacylglycerides followed by acid-mediated esterification or enzymatic catalysis (lipase. In this case, the type of catalyst did not significantly influence FAEE yields. In the lipid extract, we identified palmitic, linoleic, oleic, and stearic acids with palmitic acid being the most abundant. Our results suggest that enzymatic catalysis is a viable method for the extraction of lipids in the microalga, Scenedesmus ecornis.
  1. Two new Ni(II) supramolecular complexes based on ethyl isonicotinate and ethyl nicotinate for removal of acid blue 92 dye Science.gov (United States) Etaiw, Safaa El-din H.; Marie, Hassan 2018-03-01 Two new luminescent supramolecular complexes (SC); [Ni(EIN)4(NCS)2] SC1 and [Ni2(EN)8(NCS)4] SC2, (EIN = ethyl isonicotinate, EN = ethyl nicotinate), have been synthesized by self-assembly method and structurally characterized by X-ray single crystal, FT-IR and UV-Vis spectra, PXRD, elemental and thermogravimetric analyses. Both SC1 and SC2 are monoclinic crystals however, they have different asymmetric units. Ni(II) atoms in both SC are isostructural and have similar hexa-coordinate environment. The structures of SC1 and SC2 consist of parallel polymeric 1D-chains, extended in two and three dimensional supramolecular frameworks by intermolecular hydrogen bonding interactions. SC1 and SC2 are luminescent materials which can be used in applications as molecular sensing systems. SC1 and SC2 were used as heterogeneous catalysts for degradation of acid blue 92 (AB-92) under sun light irradiation. The fluorescence measurements of terephthalic acid technique as a probe molecule were used to determine the •OH radicals. Also the radicals trapping experiments using isopropanol alcohol (IPA) as radical scavenger were discussed. In addition a mechanism of degradation was proposed and discussed.
  2. Nano-emulsion based on acrylic acid ester co-polymer derivatives as an efficient pre-tanning agent for buffalo hide Farouk Abd El-Monem 2017-05-01 Full Text Available Acrylic copolymer nanoemulsions were prepared based on methyl methacrylate (MMA and butyl acrylate (BA. The prepared acrylic copolymer emulsions were characterized using solid content, rheological properties, molecular weight, MFFT and TEM. The prepared polymers were used as pre-tanning of the depickled hide to enhance the physico-mechanical properties of tanned leather. The key parameters which affect exhaustion and fixation of chrome tan as well as shrinkage temperature of the tanned leather were studied and evaluated using SEM, shrinkage temperature and the mechanical properties of the pre-tanned leather. The results showed that, the prepared polymers A & C are the best polymers in improving the physical properties of the treated leather. Furthermore, the shrinkage temperature and the mechanical properties of the tanned leather were improved. In addition, a significant enhancement in the texture of the leather treated by the polymers was noticed as proved by scanning electron microscopy (SEM.
  3. Theoretical study of chain transfer to solvent reactions of alkyl acrylates. Science.gov (United States) Moghadam, Nazanin; Srinivasan, Sriraj; Grady, Michael C; Rappe, Andrew M; Soroush, Masoud 2014-07-24 This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.
  4. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid Hongzhu Liu 2017-01-01 Full Text Available Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE, vinyl acetate (VAc, n-butyl acrylate (BA, Veova 10, and acrylic acid (AA. The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.
  5. Storage Stability Improvement of Copolymer Grafted Polypropylene-AcrylicAcid (PP-AA), by means of Various After Treatment Processes International Nuclear Information System (INIS) Gitopadmojo, Isminingsih 2000-01-01 Polypropylene yams that have been subjected to irradiation induced graftco-polymerization with acrylic acid, have gained its moisture regain and dyeability, that fulfilled the requirement as textile material for garment.However, the copolymer grafted PP-AA has suffered from degradation in thestorage, which was indicated in the previous study that the strengthretention has dropped tremendously by photo-oxidation or photo-degradation.After treatments of PP-AA yams with chemical compound that was able toprevent further photo-oxidation, will be expected to improve the stability ofPP-AA in storage. In this research activity, the polypropylene (PP) yams weresubjected to irradiation induced graft co-polymerization by means ofγ-Ray Co-60 as irradiation source with acrylic acid (AA) as monomer.Various after treatments were subjected to the grafted PP-AA yams such asalkalisation process; dyeing (anionic dyes, cationic dyes and nonionic dyes);as well as processing with optical brightening agent and UV stabilizer,separately. The PP-AA yams (before and after treatment) were subjected tostorage from 1 month up to 42 months, and then being tested for theirmoisture regain, strength retention and elongation at breaks. The samplesbeing stored for 12 months were subjected to radical analysis. It isconcluded from the experiment that after treatment of grafted PP-AA by meansof those various processes were able to improve the stability of copolymergrafted PP-AA in storage. The presence of peroxide radical in the ESR(electron spin resonance) spectrum on PP-AA yams before treatment and theones after treated with alkaline and being stored for 12 months haveindicated the presence of photo oxidation or photo degradation, while thepresence of poly enyl radical in the ESR spectrum of after treated PP-AA withdyes having azo and azine compound as chromophore, as well as with UVstabilizer with carbonyl as chromophore and being stored for 12 months haveproved that its presence have protected such
  6. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide. Science.gov (United States) Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas 2014-12-01 The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.
  7. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH. Science.gov (United States) Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L 2015-06-15 Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film. Copyright © 2015 Elsevier Inc. All rights reserved.
  8. Synthesis of sulfur-containing lubricant additives on the basis of fatty acid ethyl esters Iurii S. Bodachivskyi 2016-12-01 Full Text Available The study reveals an energy-, resource- and eco-friendly method for preparation of sulfur-containing lubricant additives via interaction of fatty acid ethyl esters of rapeseed oil with elemental sulfur. The structure of synthesized compounds under various reactants ratio (5–50 wt.% of sulfur, duration (30–240 min and temperature of the process (160–215°С was investigated using various analytical techniques. According to the established data, aside from addition to double bonds, the side reaction of hydrogen substitution at α-methylene groups near these bonds occurs and induces the formation of conjugated systems and chromophoric sulfur-rich derivatives. Also, we found that increase of process duration evokes growth of polysulfane chains, in contrast to the raise of temperature, which leads to the formation of sulfur-containing heterocycles and hydrogen sulfide, as a result of elimination. Influence of accelerators on sulfurization of fatty acid ethyl esters was also examined. The most effective among them are mixtures of zinc dibutyldithiocarbamate with zinc oxide or stearic acid, which soften synthesis conditions and doubly decrease duration of the high-temperature stage. In addition, sulfur-containing compositions of ethyl esters and α-olefins, vulcanized esters by benzoyl peroxide, nonylphenols and zinc dinonylphenyldithiophosphate were designed. The study identified that lithium lubricant with sulfurized vulcanized esters provides improved tribological properties, in comparison with base lubricant or lubricant with the non-modified product.
  9. Excess molar volumes and deviation in viscosities of binary liquid mixtures of acrylic esters with hexane-1-ol at 303.15 and 313.15K OpenAIRE Patil, Sujata S.; Mirgane, Sunil R.; Arbad, Balasaheb R. 2014-01-01 Densities and viscosities for the four binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with hexane-1-ol at temperatures 303.15 and 313.15 K and at atmospheric pressure were measured over the entire composition range. These values were used to calculate excess molar volumes and deviation in viscosities which were fitted to Redlich–Kister polynomial equation. Recently proposed Jouyban Acree model was also used to correlate the experimental value...
  10. Preparation of poly(vinyl alcohol) membranes grafted with N-vinyl imidazole/acrylic acid binary monomers International Nuclear Information System (INIS) Ajji, Zaki; Ali, Ali 2006-01-01 Poly(vinyl alcohol) films were grafted with two monomers using gamma radiation, acrylic acid and N-vinyl imidazole. The influence of different parameters on the grafting yield was investigated as: type of solvent and solvent composition, comonomer concentration and composition, addition of mineral acids, and irradiation dose. Water uptake in respect to the grafting yield was also evaluated. The ability of the grafted films to adsorb copper ions was elaborated and discussed for different grafting yields and ph values of the solution. (authors)
  11. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst. Science.gov (United States) Dai, Lei; Qin, Qing; Zhao, Xiaojing; Xu, Chaofa; Hu, Chengyi; Mo, Shiguang; Wang, Yu Olivia; Lin, Shuichao; Tang, Zichao; Zheng, Nanfeng 2016-08-24 Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni-Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources.
  12. Polyelectrolyte Complex Nanoparticles of Poly(ethyleneimine) and Poly(acrylic acid): Preparation and Applications OpenAIRE Martin Müller; Bernd Keßler; Sebastian Poeschla; Bernhard Torger; Johanna Fröhlich 2011-01-01 In this contribution we outline polyelectrolyte (PEL) complex (PEC) nanoparticles, prepared by mixing solutions of the low cost PEL components poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAC). It was found, that the size and internal structure of PEI/PAC particles can be regulated by process, media and structural parameters. Especially, mixing order, mixing ratio, PEL concentration, pH and molecular weight, were found to be sensible parameters to regulate the size (diameter) of spherica...
  13. Studies on the antifungal activities of the novel synthesized chelating co-polymer emulsion lattices and their silver complexes Abd-El-Ghaffar M.A. 2008-01-01 Full Text Available The novel binary chelating co-polymers of butyl acrylate with itaconic and maleic acids were prepared by emulsion polymerization process. The chelating co-polymers of butyl acrylate-co-itaconic acid (BuA/IA and butyl acrylate-co-maleic acid (BuA/MA and their silver complexes were characterized and identified using IR spectroscopy and differential scanning calorimetry (DSC measurements. The biological activities of these compounds were studied against various types of fungal species. The dose and the rate of leached silver ions were controlled by the type of the co-polymers used and the solubility in the medium. The results provided laboratory support for the concept that the polymers containing chemically bound biocide are useful for controlling microbial growth. The silver uptake by strains of different fungal species was studied to determine their difference in behavior to the antifungal activities of these compounds. The uptake strategy was examined by transmission electron microscopy (TEM.
  14. Synthesis of ethyl ( sup 14 CH sub 3 )methylmalonyl thioglycolate as a possible substrate analogue of ( sup 14 CH sub 3 )methylmalonyl coenzyme-A Energy Technology Data Exchange (ETDEWEB) Kovacs, I. (BIOGAL Pharmaceutical Works, Debrecen (Hungary)); Kovacs, Z. (Inst. of Nuclear Research, Debrecen (Hungary)) 1991-11-01 Ethyl methylmalonyl thioglycolate is a potential substrate analogue of methylmalonyl-coenzyme-A (methylmalonyl-CoA) in the investigation of propionic acid metabolism. To prove this hypothesis, the tracer ethyl ({sup 14}CH{sub 3}) methylmalonyl thioglycolate was synthesized via methyl-Meldrum's acid to carry out the biochemical examinations. The method described can also be used to synthesize ({sup 14}CH{sub 3}) methylmalonyl-CoA by transesterification of active labelled methylmalonyl thiophenyl ester. This latter intermediate is chemically stable when stored at room temperature, and the unstable ({sup 14}CH{sub 3})methylmalonyl-CoA can be prepared in one step just preceeding the biochemical experiments. (author).
  15. Avaliação da interação macromolécula/íon Zn+2 em meio aquoso: poli(acrilamida-co-ácido acrílico e taninos Estimation of the macromolecules/zinc ion interaction in the aqueous solution: poly(acrylamide-co-acrylic acid and tannins Márcia D. Clarisse 2000-09-01 Full Text Available Este trabalho visa o estudo da interação entre polímeros sintéticos e produtos naturais à base de taninos com o íon zinco (Zn+2 em meio aquoso para sua utilização na remoção de metais em efluentes. Uma série de copolímeros poli(acrilamida-co-ácido acrílico de diferentes composições e homopolímeros de acrilamida e de ácido acrílico foram preparados, assim como, taninos comerciais foram utilizados como recebidos e purificados por extração. Uma metodologia de avaliação da eficiência de interação da macromolécula com o íon Zn+2 foi desenvolvida baseada em curva padrão de intensidade de absorção na região do ultravioleta-visível (UV-VIS em função da concentração do complexo formado, utilizando colorimetria. A capacidade de interação com o íon zinco foi ligeiramente maior para os polímeros sintéticos porém o produto natural tem a vantagem de apresentar um custo mais baixo.The aim of this work was to evaluate the interaction between natural and synthetic macromolecules with the zinc ion (Zn+2 in aqueous solution. Polyacrylamide, poly(acrylic acid and poly(acrylamide-co-acrylic acid were prepared and natural products (tannins were extracted and purified from commercial products. The methodology to evaluate the macromolecule/zinc ion interaction was based on colorimetry by using a standard curve. The interaction efficiency was slightly larger for the synthetic macromolecules when compared to the natural one. Nevertheless, the tanning has lower cost and its use could be recommended.
  16. Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium for detection of alcohol abuse during pregnancy: Correlation study between both biomarkers. Science.gov (United States) Cabarcos, Pamela; Tabernero, María Jesús; Otero, José Luís; Míguez, Martha; Bermejo, Ana María; Martello, Simona; De Giovanni, Nadia; Chiarotti, Marcello 2014-11-01 This article presents results from 47 meconium samples, which were analyzed for fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for detection of gestational alcohol consumption. A validated microwave assisted extraction (MAE) method in combination with GC-MS developed in the Institute of Forensic Science (Santiago de Compostela) was used for FAEE and the cumulative concentration of ethyl myristate, ethyl palmitate and ethyl stearate with a cut-off of 600ng/g was applied for interpretation. A simple method for identification and quantification of EtG has been evaluated by ultrasonication followed solid phase extraction (SPE). Successful validation parameters were obtained for both biochemical markers of alcohol intake. FAEE and EtG concentrations in meconium ranged between values lower than LOD and 32,892ng/g or 218ng/g respectively. We have analyzed FAEE and EtG in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. Certain agreement between the two biomarkers was found as they are both a very specific alcohol markers, making it a useful analysis for confirmation. Copyright © 2014 Elsevier B.V. All rights reserved.
  17. Flotation of uranium values using di (2-ethyl hexyl) phosphoric acid International Nuclear Information System (INIS) Singh, Ajoy Kumar; Padmanabhan, N.P.H.; Sridhar, U.; Krishna Rao, N. 1998-01-01 The use of solvent extractants for mineral flotation, especially for difficult-to-float minerals, is gaining importance as they are highly selective to specific metal ions and form strong and stable complexes mostly by chelation. Studies carried out with di(2 ethyl hexyl) phosphoric acid (D2EHPA) (an organic solvent used in the extraction of uranium from phosphoric acid) as collector for flotation of uranium minerals from ore samples of Domiasiat, Meghalaya and Jaduguda, Bihar have yielded encouraging results. Although flotation of uranium minerals using other solvent extractants like tributyl phosphoric acid (TBP) has been studied, the uraninite-D2EHPA system has not been tested so far. This technical note puts on record the findings of the preliminary studies carried out. (author)
  18. Grafting of polyethylene films with acrylic acid and acrylonitril using gamma radiation International Nuclear Information System (INIS) Ajji, Z.; Al-Nesr, E. 2003-12-01 Acrylic acid (AAc) and acrylonitrile (AN) and their binary mixtures were graft copolymerized onto low density polyethylene (LDPE) films using gamma irradiation. The effects of different parameters on the graft yield were studies such as monomer concentration, inhibitor concentration, and irradiation dose. The obtained grafted films were characterized using FTIR spectroscopy, thermal gravimetry, and differential scanning calorimetry. Water uptake and the ion uptake were also evaluated, and the ability of grafted films to uptake heavy ions such as Ni 2+ and Cu 2+ was discussed. (author)
  19. Obtention of zinc polymethacrylate via free radicals induced by gamma radiation; Obtencion del polimetacrilato de zinc via radicales libres inducidos por radiacion gamma Energy Technology Data Exchange (ETDEWEB) Urena N, F.; Flores E, J. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Estado de Mexico (Mexico) 2000-07-01 The objective of this work was to synthesise the monomer of zinc methacrylate and subsequently to carry out the polymerization reaction with the purpose to obtain the compound desired, the zinc polymethacrylate. For this it was used a gamma radiation source, {sup 60} Co, as initiator of the polymerization reaction. (Author)
  20. Oriented antibody immobilization to polystyrene macrocarriers for immunoassay modified with hydrazide derivatives of poly(methacrylic acid Vinokurova Ludmila G 2001-08-01 Full Text Available Abstract Background Hydrophobic polystyrene is the most common material for solid phase immunoassay. Proteins are immobilized on polystyrene by passive adsorption, which often causes considerable denaturation. Biological macromolecules were found to better retain their functional activity when immobilized on hydrophilic materials. Polyacrylamide is a common material for solid-phase carriers of biological macromolecules, including immunoreagents used in affinity chromatography. New macroformats for immunoassay modified with activated polyacrylamide derivatives seem to be promising. Results New polymeric matrices for immunoassay in the form of 0.63-cm balls which contain hydrazide functional groups on hydrophilic polymer spacer arms at their surface shell are synthesized by modification of aldehyde-containing polystyrene balls with hydrazide derivatives of poly(methacrylic acid. The beads contain up to 0.31 μmol/cm2 active hydrazide groups accessible for covalent reaction with periodate-oxidized antibodies. The matrices obtained allow carrying out the oriented antibody immobilization, which increases the functional activity of immunosorbents. Conclusions An efficient site-directed antibody immobilization on a macrosupport is realized. The polymer hydrophilic spacer arms are the most convenient and effective tools for oriented antibody coupling with molded materials. The suggested scheme can be used for the modification of any other solid supports containing electrophilic groups reacting with hydrazides.
  1. Enzymatic modification of natural and synthetic polymers using lipases and proteases Science.gov (United States) Chakraborty, Soma Enzymatic modification of natural/synthetic polymers [starch nanoparticles, poly (n-alkyl acrylates) and poly(vinyl formamide)] was studied. Enzymes used for catalysis were lipases and proteases. Starch nanoparticles (40nm diameter) were incorporated into AOT-coated reverse micelles. Reactions performed with the acylating agents vinyl stearate, epsilon-caprolactone and maleic anhydride in toluene in presence of Novozyme-435 at 40°C for 36h gave products with degrees of substitution of 0.8, 0.6 and 0.4 respectively. DEPT-135 NMR spectra revealed that the modification occurred regioselectively at the C-6 position of the glucose units. Infrared microspectroscopy showed that the surfactant coated starch nanoparticles diffuse into pores of Novozyme-435 beads, coming in close proximity with CALB to promote modification. The modified products retained nanoscale dimensions. Catalysis of amide bond formation between a low molar mass amine and ester side groups of poly(n-alkyl acrylates)[poly(ethyl acrylate), poly(methyl acrylate) and poly(butyl acrylate)] was also examined. The nucleophiles were mono and diamines. Among the poly(n-alkyl acrylates) and the lipases studied, poly(ethyl acrylate) was the preferred substrate and Novozyme-435 the most active lipase. Poly(ethyl acrylate) in 80% by-volume toluene was reacted with 1 equivalent per repeat unit of hexyl amine at 70°C in presence of Novozyme-435. The product contained 10.6 mol% amide groups. Attempts to increase the amidation beyond 10--11 mol% by increasing the reaction time or use of fresh enzyme were unsuccessful, showing that poly(ethylacrylate-co-10mol%hexylacrylamide) is a poor substrate for further acylation. When chiral amines ([R,S]-alpha-methyl benzylamine, [R,S]-beta-methyl phenyl amine) were used as nucleophiles, Novozyme-435 enantioselectively catalyzed amidation of poly(ethyl acrylate). Poly(vinyl formamide), P(VfAm) by acid or base-catalyzed hydrolysis leads to poly(vinylamine), P(VAm), and
  2. Improved homopolymer separation to enable the application of H-1 NMR and HPLC for the determination of the reaction parameters of the graft copolymerization of acrylic acid onto starch NARCIS (Netherlands) Witono, Judy R.; Marsman, Jan Henk; Noordergraaf, Inge-Willem; Heeres, Hero J.; Janssen, Leon P. B. M. 2013-01-01 Graft copolymers of starch with acrylic acid are a promising green, bio based material with many potential applications. The grafting of acrylic acid onto cassava starch in an aqueous medium initiated by Fenton's reagent has been studied. Common grafting result parameters are add-on (yield) and
  3. Continuous production of fatty acid ethyl esters from soybean oil at supercritical conditions - doi: 10.4025/actascitechnol.v34i2.11255 Camila da Silva 2012-03-01 Full Text Available This work reports the production of fatty acid ethyl esters (FAEE from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process using different reactor configurations. Experiments were performed in a tubular reactor in one-step reaction and experimentally simulating two reactors, one operated in series and the other a recycle reactor. The reaction products were analyzed for their content of residual triglycerides, glycerol, monoglycerides, diglycerides, ethyl esters and decomposition. Results show that the configurations studied with intermediate separation of glycerol afford higher conversions of vegetable oil to their fatty acid ethyl esters derivatives when compared to the one-step reaction, with relatively low decomposition of fatty acids (< 5.0 wt%.
  4. Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol) NARCIS (Netherlands) Park, H.C.; Park, H.; Meertens, R.M.; Meertens, R.M.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A. 1994-01-01 Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend
  5. Hierarchically organized architecture of potassium hydrogen phthalate and poly(acrylic acid): toward a general strategy for biomimetic crystal design. Science.gov (United States) Oaki, Yuya; Imai, Hiroaki 2005-12-28 A hierarchically organized architecture in multiple scales was generated from potassium hydrogen phthalate crystals and poly(acrylic acid) based on our novel biomimetic approach with an exquisite association of polymers on crystallization.
  6. Conducting polymers of octanoic acid 2-thiophen-3-yl-ethyl ester and their electrochromic properties International Nuclear Information System (INIS) Camurlu, Pinar; Cirpan, Ali; Toppare, Levent 2005-01-01 Octanoic acid 2-thiophen-3-yl-ethyl ester was synthesized via the reaction of 3-thiophene ethanol with octanoyl chloride. The resulting monomer was electrochemically homopolymerized in the presence of tetrabutylammonium tetrafluoroborate as the supporting electrolyte, in the acetonitrile/borontrifluoride ethyl ether solvent system. The resulting polymer was characterized using various experimental techniques. Spectroelectrochemistry analysis of the homopolymer reflects electronic transitions at 434, ∼800 and ∼1100 nm, revealing π-π* transition, polaron and bipolaron band formation, respectively, leading to esthetically pleasing color changes between transmissive yellow and blue, with reasonable switching times
  7. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer Amin Shafiei 2017-03-01 Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.
  8. Palm oil based polyols for acrylated polyurethane production International Nuclear Information System (INIS) Rida Tajau; Mohd Hilmi Mahmood; Mek Zah Salleh; Khairul Zaman Mohd Dahlan; Rosley Che Ismail 2006-01-01 Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)
  9. Contact dermatitis to ethyl-cyanoacrylate-containing glue. Science.gov (United States) Belsito, D V 1987-10-01 3 patients with contact dermatitis to an ethyl cyanoacrylate glue are presented. Although reactions to cyanoacrylate glues are considered rare, more widespread use of these products by nail salons is likely to be associated with an increased incidence of positive reactions. All 3 of our patients came into contact with the glue during "nail wrapping". In this process, ethyl cyanoacrylate or another "instant glue" is used to adhere glue-impregnated silk or linen to the nail plate which is then filed to shape the nail. This procedure creates fine acrylic-containing dust which may facilitate an allergic response. Fine particulate matter may be transferred to other distant cutaneous sites, such as the eyelids, resulting in more widespread cutaneous eruptions. Dermatologists in areas where nail wrapping is becoming more fashionable are advised to be alert to potential cyanoacrylate glue allergies which present as periungual eczema which may be associated with eyelid dermatitis and features of nummular dermatitis particularly over the dorsal hand.
  10. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent. Science.gov (United States) Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill 2003-05-16 The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.
  11. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study Science.gov (United States) Suaniti, Ni Made; Manurung, Manuntun 2016-03-01 Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.
  12. The development of epoxidised palm oil acrylate (EPOLA) and its applications Energy Technology Data Exchange (ETDEWEB) Mahmood, Mohd Hilmi [Nuclear Energy Unit, Bangi, Selangor (Malaysia) 1994-12-31 The topics are discussed briefly. Acrylated palm oil is prepared through acrylation process, whereby, acrylic acid is introduced into oxirane group of the EPOP (epoxidised palm oil products), EPOLA (epoxidised palm oil products acrylate) was found curable when subjected to UV (ultrviolet) light giving soft coatings. EPOLA is used as radiation curable filler/sealer, radiation curable pressure sensitive adhesives and satisfactorily be coated on wood substrates (rubberwood parquets).
  13. The development of epoxidised palm oil acrylate (EPOLA) and its applications International Nuclear Information System (INIS) Mohd Hilmi Mahmood 1993-01-01 The topics are discussed briefly. Acrylated palm oil is prepared through acrylation process, whereby, acrylic acid is introduced into oxirane group of the EPOP (epoxidised palm oil products), EPOLA (epoxidised palm oil products acrylate) was found curable when subjected to UV (ultrviolet) light giving soft coatings. EPOLA is used as radiation curable filler/sealer, radiation curable pressure sensitive adhesives and satisfactorily be coated on wood substrates (rubberwood parquets)
  14. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations. Science.gov (United States) Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan 2015-08-04 Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
  15. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid). Science.gov (United States) Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar 2014-10-13 This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.
  16. Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate Energy Technology Data Exchange (ETDEWEB) Teerachaiyapat, Thanyarutt; Ramakul, Prakorn [Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom (Thailand) 2016-01-15 Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lactic acid in the feed solution, with good agreement achieved.
  17. Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate International Nuclear Information System (INIS) Teerachaiyapat, Thanyarutt; Ramakul, Prakorn 2016-01-01 Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lactic acid in the feed solution, with good agreement achieved.
  18. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly( -caprolactone)-b-poly(acrylic acid) DEFF Research Database (Denmark) Javakhishvili, Irakli; Hvilsted, Søren 2008-01-01 Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid, subsequ....... As a result stable, aggregation-free nanopaticles with moderate dispersity as estimated from UV-visible spectroscopy and transmission electron microscopy (TEM) data were obtained....... chromatography (SEC), nuclear magnetic resonance eR NMR) and infrared (FT IR) spectroscopy. The capacity of the resulting block copolymer in preparation of monolayer-protected gold nanoparticles has been examined by reduction of a gold salt in the presence of this macroligand under thiol-deficient conditions...
  19. Environmental effect of rapeseed oil ethyl ester International Nuclear Information System (INIS) Makareviciene, V.; Janulis, P. 2003-01-01 Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NO x ), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NO x showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NO x emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO 2 ) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)
  20. Development of radiation curable surface coating based on soybean oil. part I. preparation and characterization of acrylated oil International Nuclear Information System (INIS) Ibrahim, M.S.; Said, H.M.; Moussa, I.M. 2005-01-01 An epoxy acrylate was synthesized from epoxidized soybean oil (ESOL) by using acrylic acid monomer. Triethyl amine (TEA) and hydroquinone were used as catalyst and inhibitor respectively. The epoxidized soybean oil acrylate (ESOLA) is done by introducing acrylic acid into oxirane groups of the epoxidized oil (ESOL). This reaction was confirmed by analytical data in terms of oxirane oxygen content, acid value, viscosity and spectroscopically analysis
  1. Analysis and Testing of Bisphenol A—Free Bio-Based Tannin Epoxy-Acrylic Adhesives Shayesteh Jahanshahi 2016-04-01 Full Text Available A tannin-based epoxy acrylate resin was prepared from glycidyl ether tannin (GET and acrylic acid. The influence of the reaction condition for producing tannin epoxy acrylate was studied by FT-MIR, 13C-NMR, MALDI-TOF spectroscopy and shear strength. The best reaction conditions for producing tannin epoxy acrylate resin without bisphenol A was by reaction between GET and acrylic acid in the presence of a catalyst and hydroquinone at 95 °C for 12 h. FT-MIR, 13C-NMR and MALDI-TOF analysis have confirmed that the resin has been prepared under these conditions. The joints bonded with this resin were tested for block shear strength. The results obtained indicated that the best strength performance was obtained by the bioepoxy-acrylate adhesive resin prepared at 95 °C for a 12-h reaction.
  2. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field Science.gov (United States) Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S. 2007-10-01 A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).
  3. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin. Science.gov (United States) Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R 2003-05-16 In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.
  4. Structure- Property Behavior of Poly (acrylic acid) Hydrogels Synthesized by Radiation Induced Polymerization International Nuclear Information System (INIS) Nizam El-Din, H.M.M.; Ibrahim, M.S. 2000-01-01 Hydrogel containing hydroxyl group based on glycerol, ethylene glycol and acrylic monomer, have been prepared by using gamma radiation. The application of the prepared hydrogel for recovery of CU 2+ , Co 2+ , Ni 2+ , and Pb 2+ was also studied. The hydrogel for complexes with metals have been isolated and characterized by using different spectroscopic techniques IR and thermal analysis. TGA thermo grams were used to determine the kinetic parameters such as activation energy and order of reaction. The complexometric titration showed that the hydrogels have a great affinity to recover the metal ions in the following order Pb 2+ > Ni 2+ > Cu 2+ > Co 2+ . However the hydrogel containing glycerol has a great tendency towards metals recovery than than the one containing ethylene glycol
  5. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic Based Super Absorbent Polymers Sheila Devasahayam 2015-09-01 Full Text Available With the rising cost of energy and fuel oils, clean coal technologies will continue to play an important role during the transition to a clean energy future. Victorian brown coals have high oxygen and moisture contents and hence low calorific value. This paper presents an alternative non evaporative drying technology for high moisture brown coals based on osmotic dewatering. This involves contacting and mixing brown coal with anionic super absorbent polymers (SAP which are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact times and conditions. The amount of water present in Loy Yang coal was reduced by approximately 57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.
  6. Synthesis and characterization of super absorbent poly (acrylamide-co-potassium acrylate) hydrogels by radiation technique International Nuclear Information System (INIS) Erizal 2010-01-01 A series of super absorbent hydrogels were prepared from acrylamide (AAm) and potassium acrylate (KA) by gamma irradiation technique at room temperature. The solution containing potassium acrylate 15% and different concentrations of AAm (10-16%) were irradiated by gamma rays (20-40 kGy). The hydrogels produced by irradiation were characterized by fourier transform infra red spectroscopy (FT-IR). The gel fraction, kinetics of swelling and the equilibrium degree of swelling (EDS) were studied. Under irradiation dose of 20 kGy and concentration of AAM 10 %), poly(AAm-co-KA) hydrogel with high gel fraction (99.08%) and very high EDS (420 g/g) were obtained. The capacity of hydrogel to adsorb metal ion Cu 2+ and Fe 3+ were investigated. It is shown than 10 minutes the hydrogel could adsorb Cu 2+ ion up to 95 %, and Fe 3+ ion up to 55 % in 80 minutes. This hydrogel has a potential to be used for soil conditioning and ion metal absorbent. (author)
  7. A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite Science.gov (United States) AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A. 2018-06-01 This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.
  8. The role of poly(methacrylic acid) conformation on dispersion behavior of nano TiO2 powder Science.gov (United States) Singh, Bimal P.; Nayak, Sasmita; Samal, Samata; Bhattacharjee, Sarama; Besra, Laxmidhar 2012-02-01 To exploit the advantages of nanoparticles for various applications, controlling the dispersion and agglomeration is of paramount importance. Agglomeration and dispersion behavior of titanium dioxide (TiO2) nanoparticles was investigated using electrokinetic and surface chemical properties. Nanoparticles are generally stabilized by the adsorption of a dispersant (polyelectrolyte) layer around the particle surface and in this connection ammonium salt of polymethacrylic acid (Darvan C) was used as dispersant to stabilize the suspension. The dosages of polyelectrolyte were optimized to get best dispersion stability by techniques namely particle charge detector (13.75 mg/g) and adsorption (14.57 mg/g). The surface charge of TiO2 particles changed significantly in presence of dispersant Darvan C and isoelectric point (iep) shifted significantly towards lower pH from 5.99 to 3.37. The shift in iep has been quantified in terms of free energy of interaction between the surface sites of TiO2 and the adsorbing dispersant Darvan C. Free energies of adsorption were calculated by electrokinetic data (-9.8 RT unit) and adsorption isotherms (-10.56 RT unit), which corroborated well. The adsorption isotherms are of typical Langmuir type and employed for calculation of free energy. The results indicated that adsorption occurs mainly through electrostatic interactions between the dispersant molecule and the TiO2 surface apart from hydrophobic interactions.
  9. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions. Science.gov (United States) Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei 2016-01-08 Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  10. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .2. Synthesis and characterization of polymers and copolymers NARCIS (Netherlands) Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G 1996-01-01 The title (co)polymers, used for our investigations on their photoresponsive behaviour were obtained by free radical (co)polymerization. The monomer was either an acrylate or a methacrylate to which an azobenzene group, modified with a para-placed dimethylamino or a carboxylic pendant group, was
  11. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Science.gov (United States) Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer 2012-08-03 The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.
  12. The active component of vanadium-molybdenum catalysts for the oxidation of acrolein to acrylic acid International Nuclear Information System (INIS) Andrushkevich, T.V.; Kuznetsova, T.G. 1986-01-01 The catalytic properties of the vanadium-molybdenum oxide system were investigated in the oxidation of acrolein to acrylic acid. The active component of the catalyst is the compound VMo 3 O 11 , the maximum amount of which is observed at a content of 7-15 mole% V 2 O 4 . The compound VMo 3 O 11 is formed in the thermodecomposition of silicomolybdovanadium heteropoly acids or isopoly compounds, reduced with respect to vanadium, and contains V 4+ and Mo 6+ . The optimum treatment for the formation of this compound is treatment in the reaction mixture at 400 degrees C
  13. Mechanisms of chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin Science.gov (United States) Guo, Miao; Rong, Wen-Ting; Hou, Jie; Wang, Dong-Fang; Lu, Yu; Wang, Ying; Yu, Shu-Qin; Xu, Qian 2013-06-01 Chitosan-modified poly(lactic-co-glycolic acid) nanoparticles (CHI/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), named CHI/PLGA/SN-38 NPs, were successfully prepared using an oil-in-water (O/W) solvent evaporation method. The physicochemical properties of the novel NPs were characterized by DLS, Zeta potential, SEM, DSC, XRD, and FTIR. The encapsulation efficiency and drug loading content were 71.83 (±2.77)% and 6.79 (±0.26)%, respectively. In vitro drug release in the simulated gastric juice was lower than that in the intestinal juice. In situ single-pass intestinal perfusion (SPIP) studies indicated a dramatic improvement of drug absorption as a result of the synergistic effect between CHI and PLGA on P-glycoprotein (Pgp) inhibition. CHI/PLGA NPs showed high cellular uptake and low efflux for drugs in Caco-2 cells. The cytotoxicity studies revealed that CHI/PLGA NPs had a transient effect on the membrane integrity, but did not have an influence on cell viability. Based on the in vitro release studies, SPIP, and intracellular drug accumulation and transport investigations, we speculate rationally that CHI/PLGA NPs were mainly internalized in the form of intact NPs, thus escaping the recognition of enterocyte Pgp and avoiding efflux into the apical part of the enterocytes. After partial release of drugs inside the enterocytes, CHI/PLGA interfered with the microenvironment of Pgp and further weakened the Pgp-mediated efflux. Then, the drug-loaded NPs exited via the exocytose effect from the basal part of the enterocytes and entered the blood circulation. These results showed that CHI/PLGA NPs would be smart oral delivery carriers for antineoplastic agents that are also Pgp substrates.
  14. Waterborne hyperbranched alkyd-acrylic resin obtained by miniemulsion polymerization Edwin Murillo Full Text Available Abstract Four waterborne hyperbranched alkyd-acrylic resins (HBRAA were synthesized by miniemulsion polymerization from a hyperbranched alkyd resin (HBR, methyl methacrylate (MMA, butyl acrylate (BA and acrylic acid (AA, by using benzoyl peroxide (BPO and ammonium persulfate (AP as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC, nuclear magnetic resonance (NMR and gel permeation chromatography (GPC. The conversion percentage, glass transition temperature (Tg, content of acrylic polymer (determined by soxhlet extraction and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly monomodal. The film properties (gloss, flexibility, adhesion and drying time of the HBRAA were good.
  15. Fabrication and Evaluation of 2-Hydroxyethyl Methacrylate-co ... African Journals Online (AJOL) Purpose: To fabricate and evaluate oral 2-hydroxyethyl methacrylate co-acrylic acid hydrogels as a drug delivery system for sustained release of nicorandil. Methods: HEMA-co-AA hydrogels using different monomer concentrations were prepared by free radical polymerization. N, N-methylene bis acrylamide (MBA) was ...
  16. [Treatment of acrylate wastewater by electrocatalytic reduction process]. Science.gov (United States) Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min 2011-10-01 High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.
  17. Grafting of acrylic acid onto polypropylene films irradiated with argon ions International Nuclear Information System (INIS) Massa, G.; Mazzei, R.; Garcia Bermudez, G.; Filevich, A.; Smolko, E. 2005-01-01 Polypropylene (PP) foils were irradiated with 100 keV energy Argon ions at different fluences ranging from 10 12 up to 2 x 10 15 cm -2 and then grafted with acrylic acid (AA). The grafting yield was measured by weight difference and the structural changes on the films were analysed using Fourier transform infrared spectroscopy (FTIR). Different parameters that determined the grafting process such us fluence, grafting time and monomer concentration were analysed. The grafting reached an optimum value at 79% in aqueous solution at 30 min grafting time. The grafting yield as a function of the ion fluence plot, presented a maximum value, as previously found in a study of heavy beam on polymers
  18. [Preparation of Pb2+ imprinted acrylic acid-co-styrene and analysis of its adsorption properties by FAAS]. Science.gov (United States) Shawket, Abliz; Abdiryim, Supahun; Wang, Ji-De; Ismayil, Nurulla 2011-06-01 With lead ion template, acrylic acid as functional monomer, potassium persulfate as initiator, strytrene as framework monomer, lead ion imprinted polymers (Pb(II)-IIPs) were prepared using free emulsion polymerization method. The structure and morphology of the polymers were analyzed by UV-spectra, FTIR and scanning electron microscopy. The adsorption/ desorption and selectivity for Pb2+ were investigated by flame atomic absorption spectrometry (FAAS) as the detection means. The results show that compared with non-imprinted polymers(NIPs), the Pb(II)-IIPs had higher specific adsorption properties and selective recognition ability for Pb(II). The relative selectivity coefficient of Pb(II)-IIPs for Pb(II) was 6.25, 6.18, 6.25 and 6.38 in the presence of Cd(II), Cu(II), Mn(II) and Zn(II) interferences, respectively. The absorption rate was the best at the pH of adsorbent solution of 6, Adsorption rate reached 96% during the 2.5 h static adsorption time. Using 3.0 mol x L(-1) HCI as the best desorption solvent to desorb the adsorbents, the desorbtion rate reached 98%. Under the best adsorption conditions, the adsorption capacity of Pb(II)-IIPs for Pb(II) was found to be 40. mg x g(-1).
  19. Preparation of membranes by radiation grafting of acrylic acid onto Teflon-FEP film International Nuclear Information System (INIS) Gupta, B.D. 1991-01-01 The grafting of acrylic acid on radiation-peroxidised Teflon-FEP film provides an effective technique to prepare ion-exchange membranes. It was found that the grafted membranes have very high degree of swelling in aqueous KOH. The electric resistance of the film decreases considerably by grafting. An electric resistance of 0.2Ω cm 2 was obtained for a graft level beyond 58%. The hydrophilicity of the film was evaluated in terms of contact angle which shows a decreasing trend with the increasing degree of grafting. (author). 8 refs
  20. A novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) based bioanalytical method for quantification of ethyl esters of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) and its application in pharmacokinetic study. Science.gov (United States) Viswanathan, Sekarbabu; Verma, P R P; Ganesan, Muniyandithevar; Manivannan, Jeganathan 2017-07-15 Omega-3 fatty acids are clinically useful and the two marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in fish and fish oils. Omega-3 fatty acid formulations should undergo a rigorous regulatory step in order to obtain United States Food and Drug Administration (USFDA) approval as prescription drug. In connection with that, despite quantifying EPA and DHA fatty acids, there is a need for quantifying the level of ethyl esters of them in biological samples. In this study, we make use of reverse phase high performance liquid chromatography coupled with mass spectrometry (RP-HPLC-MS)technique for the method development. Here, we have developed a novel multiple reaction monitoring method along with optimized parameters for quantification of EPA and DHA as ethyl esters. Additionally, we attempted to validate the bio-analytical method by conducting the sensitivity, selectivity, precision accuracy batch, carryover test and matrix stability experiments. Furthermore, we also implemented our validated method for evaluation of pharmacokinetics of omega fatty acid ethyl ester formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
  1. pH-independent immediate release polymethacrylate formulations--an observational study. Science.gov (United States) Claeys, Bart; Vandeputte, Reinout; De Geest, Bruno G; Remon, Jean Paul; Vervaet, Chris 2016-01-01 Using Eudragit® E PO (EudrE) as a polymethacrylate carrier, the aim of the study was to develop a pH-independent dosage form containing ibuprofen (IBP) as an active compound via chemical modification of the polymer (i.e. quaternization of amine function) or via the addition of dicarboxylic acids (succinic, glutaric and adipic acid) to create a pH micro-environment during dissolution. Biconvex tablets (diameter: 10 mm; height: 5 mm) were produced via hot melt extrusion and injection molding. In vitro dissolution experiments revealed that a minimum of 25% of quaternization was sufficient to partially (up to pH 5) eliminate the pH-dependent effect of the EudrE/IBP formulation. The addition of dicarboxylic acids did not alter IBP release in a pH 1 and 3 medium as the dimethyl amino groups of EudrE are already fully protonated, while in a pH 5 solvent IBP release was significantly improved (cf. from 0% to 92% release after 1 h dissolution experiments upon the addition of 20 wt.% succinic acid). Hence, both approaches resulted in a pH-independent (up to pH 5) immediate release formulation. However, the presence of a positively charged polymer induced stability issues (recrystallization of API) and the formulations containing dicarboxylic acids were classified as mechanically unstable. Hence, further research is needed to obtain a pH-independent immediate release formulation while using EudrE as a polmethacrylate carrier.
  2. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose Energy Technology Data Exchange (ETDEWEB) Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat [Hacettepe University, Department of Chemistry, 06800 Ankara (Turkey) 2010-07-01 Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)
  3. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose International Nuclear Information System (INIS) Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat 2010-01-01 Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)
  4. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni; Obtencion y caracterizacion de copolimeros organometalicos de acido acrilico-i-polietileno, con Mo, Fe, Co, Zn y Ni Energy Technology Data Exchange (ETDEWEB) Dorantes, G.; Urena, F.; Lopez, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Lopez, R. [Universidad Autonoma del Estado de Mexico (Mexico) 1997-07-01 In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)
  5. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate Energy Technology Data Exchange (ETDEWEB) Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States) 2015-04-10 Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.
  6. Enantioselective micellar electrokinetic chromatography of dl-amino acids using (+)-1-(9-fluorenyl)-ethyl chloroformate derivatization and UV-induced fluorescence detection. Science.gov (United States) Prior, Amir; van de Nieuwenhuijzen, Erik; de Jong, Gerhardus J; Somsen, Govert W 2018-05-22 Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection. Applying signal integration over a 30-nm emission wavelength interval, signal-to-noise ratios for derivatized amino acids were up to 23 times higher as obtained using a standard photomultiplier for detection. The background electrolyte composition (electrolyte, pH, sodium dodecyl sulfate concentration, and organic solvent) was studied in order to attain optimal chemo- and enantioseparation. Enantioseparation of twelve proteinogenic dl-amino acids was achieved with chiral resolutions between 1.2 and 7.9, and detection limits for most derivatized amino acids in the 13-60 nM range (injected concentration). Linearity (coefficients of determination > 0.985) and peak-area and migration-time repeatabilities (relative standard deviations lower than 2.6 and 1.9%, respectively) were satisfactory. The employed fluorescence detection system provided up to 100-times better signal-to-noise ratios for (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids than ultraviolet absorbance detection, showing good potential for d-amino acid analysis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
  7. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating International Nuclear Information System (INIS) Kurokawa, S.; Kikuchi, T.; Sakairi, M.; Takahashi, H. 2008-01-01 Micro-dot arrays and micro-walls of acrylic acid/melamine resin were fabricated on aluminum by anodizing, atomic force microscope (AFM) probe processing, and electrophoretic deposition. Barrier type anodic oxide films of 15 nm thickness were formed on aluminum and then the specimen was scratched with an AFM probe in a solution containing acrylic acid/melamine resin nano-particles to remove the anodic oxide film locally. After scratching, the specimen was anodically polarized to deposit acrylic acid/melamine resin electrophoretically at the film-removed area. The resin deposited on the specimen was finally cured by heating. It was found that scratching with the AFM probe on open circuit leads to the contamination of the probe with resin, due to positive shifts in the potential during scratching. Scratching of the specimen under potentiostatic conditions at -1.0 V, however, resulted in successful resin deposition at the film-removed area without probe contamination. The rate of resin deposition increased as the specimen potential becomes more positive during electrophoretic deposition. Arrays of resin dots with a few to several tens μm diameter and 100-1000 nm height, and resin walls with 100-1000 nm height and 1 μm width were obtained on specimens by successive anodizing, probe processing, and electrophoretic deposition
  8. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating Energy Technology Data Exchange (ETDEWEB) Kurokawa, S.; Kikuchi, T.; Sakairi, M. [Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: [email protected] 2008-11-30 Micro-dot arrays and micro-walls of acrylic acid/melamine resin were fabricated on aluminum by anodizing, atomic force microscope (AFM) probe processing, and electrophoretic deposition. Barrier type anodic oxide films of 15 nm thickness were formed on aluminum and then the specimen was scratched with an AFM probe in a solution containing acrylic acid/melamine resin nano-particles to remove the anodic oxide film locally. After scratching, the specimen was anodically polarized to deposit acrylic acid/melamine resin electrophoretically at the film-removed area. The resin deposited on the specimen was finally cured by heating. It was found that scratching with the AFM probe on open circuit leads to the contamination of the probe with resin, due to positive shifts in the potential during scratching. Scratching of the specimen under potentiostatic conditions at -1.0 V, however, resulted in successful resin deposition at the film-removed area without probe contamination. The rate of resin deposition increased as the specimen potential becomes more positive during electrophoretic deposition. Arrays of resin dots with a few to several tens {mu}m diameter and 100-1000 nm height, and resin walls with 100-1000 nm height and 1 {mu}m width were obtained on specimens by successive anodizing, probe processing, and electrophoretic deposition.
  9. Selective surface functionalization of polystyrene induced by synchrotron or UV radiation in the presence of oxygen or acrylic acid vapors International Nuclear Information System (INIS) Kessler, Felipe; Kuhn, Sidiney; Weibel, Daniel E. 2009-01-01 Efficient surface functionalization of Polystyrene (PS) thin films by electromagnetic radiation in combination with a reactive gaseous atmosphere was obtained. Monochromatic synchrotron (SR) or polychromatic UV radiation were used as excitation sources. When SR was used, O 2 was introduced after irradiation into the UHV chamber. UV irradiation was carried out keeping a constant flow of O 2 or acrylic acid (AA) vapors during the photolysis. FTIR-ATR and XPS-NEXAFS spectra were obtained at the UFRGS and the LNLS, Campinas respectively. PS films were functionalized by monochromatic SR and then expose to O 2 at specific transitions such us C 1s →σ * C-C excitation. It was found a high rate of COO, C=O and C-O groups at the surface (> 70%). UV-assisted treatment in the presence of AA vapors showed that an efficient polymerization process took place, such as, it was observed in previous AA low pressure RF plasma treatments. UV-assisted functionalization has the advantage of lower costs and simple set-up compared to plasma treatments. (author)
  10. Antiarrhythmogenic effect of omega-3 fatty acid ethyl esters in a patient treated with Omacor after a non-Q-wave myocardial infarction Andrey Ardashev 2014-02-01 The patient agreed to add omega-3 fatty acid ethyl ester supplementation (1 g/day to his treatment regimen. Pacemaker analyses 3 months later demonstrated no NSVT and only 215 PVBs daily. In more than 1 year of follow-up, the patient has remained well and has had no further ventricular arrhythmias. We conclude that omega-3 fatty acid ethyl ester supplementation may be beneficial in post-MI patients with pacemakers who develop ventricular arrhythmias.
  11. A Review of the Literature on the Applications of CW Agents with Recommendations of Further Research on Thickened GD Science.gov (United States) 1975-12-01 be effective not only in GD but also in VX, although as much as 30% is needed to form a gel. Wills cites the polymethacrylates : the methyl and ethyl...percutaneous toxicity of additives. Horton et al showed that a 50/50 mixture of GB with hexafluoroglutaric acid , phosgene oxime, or xylene is signifi- cantly...amounts of certain products of the decomposition of the agent, viz pinacolyl hydrogen methylphosphonate and methylphosphonic acid , as much as 40 weeks
  12. Biotransformation and Production from Hansenula Anomala to Natural Ethyl Phenylacetate Tian Xun 2015-01-01 Full Text Available Ethyl phenylacetate can be widely applied in many industries, such as food, medicines, cosmetics and medicinal herbs. At the moment, the production of natural ethyl phenylacetate is very limited. However, the biotransformation production of natural ethyl phenylacetate has an very extensive application prospect. This paper is written by taking the phenylacetic acid tolerance and the esterifying enzyme activity as the two indexes for screening the HA14 strain of hansenula anomala mutagenic which is regarded as the microorganism of ethyl phenylacetate production through biotransformation. By optimizing the production condition of phenylacetic acid and the esterification condition of ethyl phenylacetate, the production of ethyl phenylacetate accomplished through biotransformation within 72 hours can reach 864mg/L which is 171% of that of the initial bacterial strain.
  13. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer Science.gov (United States) Lei, Huibin; He, Deliang; Guo, Yanni; Tang, Yining; Huang, Houqiang 2018-06-01 A series of UV-absorbing fluorine-silicone acrylic resin polymers containing different amount of UV-absorbent were successfully prepared by solution polymerization, with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate (BHEM), vinyltrimethoxysilane (VTMS) and hexafluorobutyl methacrylate (HFMA) as modifying monomers. The acrylic polymers and the coatings thereof were characterized by Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) absorption spectrum, thermogravimetric analysis (TGA), water contact angle (CA) and Xenon lamp artificial accelerated aging tests. Results indicated that the resin exhibited high UV absorption performance as well as good thermal stability. The hydrophobicity of the coatings was of great improvement because of the bonded fluorine and silicone. Meanwhile, the weather-resistance was promoted through preferably colligating the protective effects of BHEM, organic fluorine and silicone. Also, a fitting formula about the weatherability with the BMHE content was tentatively proposed.
  14. Icosapent ethyl: a review of its use in severe hypertriglyceridemia. Science.gov (United States) Kim, Esther S; McCormack, Paul L 2014-12-01 Icosapent ethyl (Vascepa®) is a high-purity ethyl ester of eicosapentaenoic acid (EPA) that is de-esterified to EPA following oral administration. Both EPA and docosahexaenoic acid (DHA) are long-chain omega-3 fatty acids that have been associated with triglyceride (TG)-lowering. However, DHA has been associated with increased low-density lipoprotein cholesterol (LDL-C) levels. Icosapent ethyl contains ≥96 % of the EPA ethyl ester, does not contain DHA, and is approved in the USA for use as an adjunct to diet to lower TG levels in adult patients with severe (≥500 mg/dL [≥5.65 mmol/L]) hypertriglyceridemia. In a pivotal phase III trial, oral icosapent ethyl 4 g/day significantly decreased the placebo-corrected median TG levels by 33.1 %. It did not increase LDL-C, had favorable effects on other lipid parameters, and had a tolerability profile similar to that of placebo. Therefore, icosapent ethyl is an effective and well-tolerated agent for the treatment of severe hypertriglyceridemia in adults.
  15. Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid Energy Technology Data Exchange (ETDEWEB) Zhao, Xiaoduo; Xiong, Dangsheng, E-mail: [email protected]; Wang, Kun; Wang, Nan 2017-06-01 The keys of biomaterials application in artificial joints are good hydrophilicity and wear resistance. One kind of the potential bio-implant materials is polyetheretherketone (PEEK), which has some excellent properties such as non-toxic and good biocompatibility. However, its bioinert surface and inherent chemical inertness hinder its application. In this study, we reported an efficient method for improving the surface wettability and wear resistance for PEEK, a layer of acrylic acid (AA) polymer brushes on PEEK surface was prepared by UV-initiated graft polymerization. The effects of different grafting parameters (UV-irradiation time/AA monomer solution concentration) on surface characteristics were clearly investigated, and the AA-g-PEEK specimens were examined by ATR-FTIR, static water contact angle measurements and friction tests. Our results reveal that AA can be successfully grafted onto the PEEK surface after UV irradiation, the water wettability and tribological properties of AA-g-PEEK are much better than untreated PEEK because that AA is a hydrophilic monomer, the AA layer on PEEK surface can improve its bearing capacity and reduce abrasion. This detailed understanding of the grafting parameters allows us to accurately control the experimental products, and this method of surface modification broadens the use of PEEK in orthopedic implants. - Highlights: • Acrylic acid was successful grafted onto PEEK substrate by UV-initiated graft polymerization. • AA-g-PEEK owned better hydrophilicity than untreated PEEK. • Wear resistance of AA-g-PEEK were significantly improved due to AA brushes could bear high contact stress.
  16. Optimization of reaction parameters for enzymatic glyceride synthesis from fish oil: Ethyl esters versus free fatty acids DEFF Research Database (Denmark) Ravn, Helle Christine; Damstrup, Marianne L.; Meyer, Anne S. 2012-01-01 Enzymatic conversion of fish oil free fatty acids (FFA) or fatty acid ethyl esters (FAE) into glycerides via esterification or transesterification was examined. The reactions catalyzed by Lipozyme™ 435, a Candida antarctica lipase, were optimized. Influence on conversion yields of fatty acid chain...... length, saturation degree, temperature, enzyme dosage, molar ratio glycerol:fatty acids, acyl source composition (w/w ratio FFA:FAE), and reaction time was evaluated collectively by multiple linear regression. All reaction variables influenced the conversion into glycerides. Transesterification of FAE...
  17. Physicochemical Characteristics and Slow Release Performances of Chlorpyrifos Encapsulated by Poly(butyl acrylate-co-styrene) with the Cross-Linker Ethylene Glycol Dimethacrylate. Science.gov (United States) Wang, Yu; Gao, Zideng; Shen, Feng; Li, Yang; Zhang, Sainan; Ren, Xueqin; Hu, Shuwen 2015-06-03 Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.
  18. Waterborne hyperbranched alkyd-acrylic resin obtained by mini emulsion polymerization Energy Technology Data Exchange (ETDEWEB) Murillo, Edwin, E-mail: [email protected] [Grupo de Investigacion en Materiales Polimericos (GIMAPOL), Universidad Francisco de Paula Santander, San Jose de Cucuta (Colombia); Lopez, Betty [Grupo de Investigacion en Ciencia de los Materiales, Universidad de Antioquia, Calle, Medellin (Colombia) 2016-10-15 Four waterborne hyper branched alkyd-acrylic resins (HBRAA) were synthesized by mini emulsion polymerization from a hyper branched alkyd resin (HBR), methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA), by using benzoyl peroxide (BPO) and ammonium persulfate (AP) as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The conversion percentage, glass transition temperature (T{sub g}), content of acrylic polymer (determined by soxhlet extraction) and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS) showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly mono modal. The film properties (gloss, flexibility, adhesion and drying time) of the HBRAA were good. (author)
  19. Depletion of abundant plasma proteins by poly(N-isopropylacrylamide-acrylic acid) hydrogel particles DEFF Research Database (Denmark) Such-Sanmartín, Gerard; Ventura-Espejo, Estela; Jensen, Ole N 2014-01-01 the application of pH-sensitive poly(N-isopropylacrylamide-acrylic acid) hydrogel particles for removal of abundant plasma proteins, prior to proteome analysis by MS. Protein depletion occurs by two separate mechanisms: (1) hydrogel particles incubated with low concentrations of plasma capture abundant proteins...... proteins are released and recovered in the eluate. We developed a series of distinct depletion protocols that proved useful for sample depletion and fractionation and facilitated targeted analysis of putative biomarkers such as IGF1-2, IBP2-7, ALS, KLK6-7, ISK5, and PLF4 by selected reaction monitoring...
  20. Critical current density in MgB2 bulk samples after co-doping with nano-SiC and poly zinc acrylate complexes International Nuclear Information System (INIS) Zhang, Z.; Suo, H.; Ma, L.; Zhang, T.; Liu, M.; Zhou, M. 2011-01-01 SiC and poly zinc acrylate complexes co-doped MgB 2 bulk has been synthesized. Co-doping can cause higher carbon substitutions and the second phase particles. Co-doping can further increase the Jc value of MgB 2 bulk on the base of the SiC doping. The co-doped MgB 2 bulk samples have been synthesized using an in situ reaction processing. The additives is 8 wt.% SiC nano powders and 10 wt.% [(CH 2 CHCOO) 2 Zn] n poly zinc acrylate complexes (PZA). A systematic study was performed on samples doped with SiC or PZA and samples co-doped with both of them. The effects of doping and co-doping on phase formation, microstructure, and the variation of lattice parameters were studied. The amount of substituted carbon, the critical temperature (T c ) and the critical current density (J c ) were determined. The calculated lattice parameters show the decrease of the a-axis, while no obvious change was detected for c-axis parameter in co-doped samples. This indicates that the carbon was substituted by boron in MgB 2 . The amount of substituted carbon for the co-doped sample shows an enhancement compared to that of the both single doped samples. The co-doped samples perform the highest J c values, which reaches 3.3 x 10 4 A/cm 2 at 5 K and 7 T. It is shown that co-doping with SiC and organic compound is an effective way to further improve the superconducting properties of MgB 2 .
  1. Radiation synthesis and characterization of pH-sensitive poly(acrylic acid-co-N-vinyl-2-pyrrolidone) hydrogels International Nuclear Information System (INIS) Yang Mingcheng; Zhu Jun; Song Weidong; Song Hongyan; Zhu Chengshen 2006-01-01 Hydrogels are crosslinked, three-dimensional hydrophilic polymer networks that swell but do not dissolve when brought into contact with water. These materials have been investigated extensively for potential applications in the biomedical field because of their similarities to soft tissues and their good tissue and blood compatibility. More specifically, pH-sensitive hydrogels are used for sustained gastro-intestinal drug delivery systems due to the intimacy and extended duration of contact. In this work, pH-sensitive copolymer hydrogels were prepared using acrylic acid and N-vinyl-2-pyrrolidone by γ-ray irradiation at ambient temperature. Effects of dose, monomer concentration, monomer composition, temperature and pH on the swelling ratio (SR) of the copolymer hydrogels were investigated in detail. The results show that SR of the copolymer hydrogels decreases with the monomer concentration and with the increase of absorbed dose. These copolymer hydrogels show good pH-sensitive behavior. These material shows no noticeable change in swelling at lower pH (pH<4) but an abrupt increase in swelling at higher pH (from pH7 to pH9.8). At pH 1.4, the SR of the copolymer hydrogels increases with the temperature. To the contrary, at pH 9.8, the SR of the copolymer hydrogels decreases with the temperature. (authors)
  2. Renewable Acrylonitrile Production Energy Technology Data Exchange (ETDEWEB) Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eaton, Todd R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sanchez i Nogue, Violeta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vorotnikov, Vassili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bratis, Adam D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Rongming [University of Colorado; Gill, Ryan T. [University of Colorado; Gilhespy, Michelle [Johnson Matthey Technology Centre; Skoufa, Zinovia [Johnson Matthey Technology Centre; Watson, Michael J. [Johnson Matthey Technology Centre; Fruchey, O. Stanley [MATRIC; Cywar, Robin M. [Formerly NREL 2017-12-08 Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.
  3. Ultraviolet curing of acrylated liquid natural rubber for surface coating application OpenAIRE Kannikar Kwanming; Pairote Klinpituksa; Wae-asae Waehamad 2009-01-01 Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR) was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR) prior obtained from LNR with formic...
  4. Effect of Cooling Rates on Shape and Crystal Size Distributions of Mefenamic Acid Polymorph in Ethyl Acetate Science.gov (United States) Mudalip, S. K. Abdul; Adam, F.; Parveen, J.; Abu Bakar, M. R.; Amran, N.; Sulaiman, S. Z.; Che Man, R.; Arshad, Z. I. Mohd; Shaarani, S. Md. 2017-06-01 This study investigate the effect of cooling rates on mefenamic acid crystallisation in ethyl acetate. The cooling rate was varied from 0.2 to 5 °C/min. The in-line conductivity system and turbidity system were employed to detect the onset of the crystallization process. The crystals produced were analysed using optical microscopy and Fourier transform infrared spectroscopy (FTIR). It was found that the crystals produced at different cooling rates were needle-like and exhibit polymorphic form type I. However, the aspect ratio and crystal size distributions were varied with the increased of cooling rate. A high crystals aspect ratio and narrower CSD (100-900 μm) was obtained at cooling rate of 0.5 °C/min. Thus, can be suggested as the most suitable cooling rate for crystallization of mefenamic acid in ethyl acetate.
  5. Synthesis and characterization of chitosan-graft-poly(acrylic acid)/rice husk ash hydrogels composites International Nuclear Information System (INIS) Rodrigues, Francisco H.A.; Lopes, Gabriel V.; Pereira, Antonio G.B.; Fajardo, Andre R.; Muniz, Edvani C. 2011-01-01 According to environmental concerns, super absorbent hydrogel composites were synthesized based on rice husk ash (RHA), an industrial waste, and Chitosan-graft-poly(acrylic acid). The WAXS and FTIR data confirmed the syntheses of hydrogel composites. The effect of crystalline or amorphous RHA on water uptake was investigated. It was found that the RHA in crystalline form induces higher water capacity (W eq ) of composites hydrogels due to the fact that the intra-interactions among silanol groups on RHA make available new sites in the polymer matrix, which could interact to water. (author)
  6. Alkyd-acrylic hybrid systems for use as binders in waterborne paints NARCIS (Netherlands) Nabuurs, T.; Baijards, R.A.; German, A.L. 1994-01-01 Alkyd-acrylic hybrids were prepd. by polymg. the acrylic monomers in the presence of colloidal alkyd droplets. Polymn. in the presence of alkyd caused a retardation of the polymn. through radical delocalization following radical transfer to the unsatd. groups of the fatty acids in the alkyd. The
  7. Hydrophilicity improvement of polyethersulfone powders by grafting acrylic acid with γ-ray simultaneous irradiation method International Nuclear Information System (INIS) Deng Bo; Hou Zhengchi; Zhang Fengying; Xie Leidong; Li Jing; Yang Haijun 2005-01-01 Acrylic acid was grafted to Polyethersulfone (PES) powders by liquid-phase simultaneous irradiation. Effects of grafting conditions, such as absorbed dose, volume fraction of monomer, inhibitor (Cu 2+ ) concentration, and pH of the grafting solution on degree of the grafting were investigated. Combined with gravimetric analysis, a working curve of grafting degree through FT-IR quantitative analysis was obtained. The highest grafting degree was achieved at dose of 25 kGy, volume fraction of monomer of 30% and inhibitor concentration of 0.004 mol/L. Greater degrees of the grafting could be obtained by adding increasing amount of hydrochloric acid to the system. Hydrophilicity of the grafted PES powders increased with higher degrees of the grafting. (authors)
  8. Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging DEFF Research Database (Denmark) Gaunø, Mette Høg; Vilhelmsen, Thomas; Larsen, Crilles Casper 2013-01-01 The purpose of this study was to investigate the in vitro release of 5-aminosalicylic acid from single extrudates by UV imaging and to explore the technique as a visualization tool for detecting film coating defects on extrudates coated with a thin ethyl cellulose layer. 5-Aminosalicylic acid ext...
  9. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation Energy Technology Data Exchange (ETDEWEB) Islas, Luisa [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico); Ruiz, Juan-Carlos [División de Ciencias Básicas e Ingeniería, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 México D.F. (Mexico); Muñoz-Muñoz, Franklin [Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, B.C. C.P 22860 (Mexico); Isoshima, Takashi [Nano Medical Engineering Laboratory, RIKEN, 2-1Hirosawa, Wako, Saitama 351-0198 (Japan); Burillo, Guillermina, E-mail: [email protected] [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico) 2016-10-30 Highlights: • Polymer grafting using gamma-radiation allowed for acrylic acid and poly(ethylene glycol) methacrylate to graft on the inner and outer surface of poly(vinyl chloride) urinary catheters. • HR-XPS revealed the different compositional percentages of the compounds present on the surface of the catheter. • Catheters that were grafted with PEGMA had the roughest surface as observed using scanning electron microscopy (SEM) and confocal laser microscopy (CLM). - Abstract: Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from {sup 60}Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C{sub 1s} and O{sub 1s} content at the catheter’s surface, revealed that the catheter’s surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC’s Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.
  10. Crosslinkers of Different Types in Precipitation Polymerization of Acrylic Acid
  11. Eshaghi 2013-01-01 Full Text Available Crosslinked poly(acrylic acids were prepared using two types of crosslinker by precipitation polymerization method in a binary organic solvent. N,N’-methylenebisacrylamide (MBA and polyethylene glycol dimethacrylate (PEGDMA-330 were used as low-molecular weight and long-chain crosslinkers, respectively. The effect of various types of crosslinkers on polymer characteristics (i.e., gel content, equilibrium swelling, glass transition temperature, and rheological properties was investigated. Maximum amount of viscosity was obtained by using long-chain crosslinker. The Flory-Rehner equation and rubber elasticity theory were used to discuss the network structure of polymer. It was observed that, the glass transition temperature (Tg of the synthesized polymer containing PEGDMA-330 is higher than that of polymer containing MBA. Apparent and rotational viscosity were used to determine the optimal crosslinker type. In addition, the consistencycoefficient (m and flow behavior index (n parameter of Ostwald equation were investigated as well.
  12. Determination of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in hair: a promising way for retrospective detection of alcohol abuse during pregnancy? Science.gov (United States) Pragst, Fritz; Yegles, Michel 2008-04-01 The retrospective detection of alcohol consumption during pregnancy is an important part of the diagnosis of the fetal alcohol syndrome. A promising way to solve this problem can be the determination of fatty acid ethyl esters (FAEE) or/and ethyl glucuronide (EtG) in hair of the mothers. In this article, the present state in analytical determination and interpretation of FAEE and EtG concentrations in hair are reviewed. Both FAEE and EtG are minor metabolites of ethanol and as direct alcohol markers very specific for alcohol. They are durably deposited in hair, which enables taking advantage of the long diagnostic time window of this sample material. In the last years, specific and sensitive methods for determination of both alcohol markers in hair were developed. Headspace solid phase microextraction in combination with gas chromatography-mass spectroscopy after hair extraction with an n-heptane/dimethylsulfoxide mixture proved to be a favorable technique for determination of four characteristic FAEE (ethyl myristate, ethyl palmitate, ethyl oleate, and ethyl stearate). EtG is extracted from hair by water and analyzed either by gas chromatography-mass spectroscopy with negative chemical ionization after cleanup with solid phase extraction and derivatization with pentafluoropropionic anhydride or by liquid chromatography-mass spectroscopy-mass spectroscopy. The detection limits of the single FAEE as well as of EtG are in the range of 1 to 10 pg/mg. FAEE as well as EtG were determined in a larger number of hair samples of teetotalers, social drinkers, patients in alcohol withdrawal treatment, and death cases with previous known heavy drinking. From the results, the following criteria were derived: strict abstinence is excluded or improbable at C FAEE >0.2 ng/mg or C EtG >7 pg/mg. Moderate social drinkers should have C FAEE alcohol abuse is probable. Until now, there has been no evaluation in context of FAS diagnosis; however, a successful application for this purpose
  13. γ-radiation-induced degradation of poly(dimethylsilylene-co-methylphenylsilylene) in cyclohexane and THF-ethyl alcohol solution International Nuclear Information System (INIS) Oka, Kunio; Nakao, Ren 1989-01-01 γ-Irradiation of high molecular weight poly(dimethylsilylene-co-methyl-phenylsilylene) in cyclohexane and THF-ethyl alcohol solutions was carried out in order to study the degradation mechanism. The G s value (number of chain scissions per 100eV radiation energy absorbed) depends on the dose rate but not on the polysilane concentration. No insertion products of dimethylsilylene or methylphenylsilylene into ethyl alcohol were detected, indicating that no silylene evolution mechanism was involved. IR analysis of the irradiated polymer suggests that chain scission occurs preferentially at the methylphenylsilylene unit. The resulting polysilane (135 Mrad irradiated) has chains of about 20 silicon atoms containing siloxane bonds and hydroxy groups. All of the results indicate that the polysilane degrades by a free radical mechanism. (author)
  14. Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment International Nuclear Information System (INIS) Alejos Altamirano, Carlos Alberto; Yokoyama, Lídia; Medeiros, José Luiz de; Queiroz Fernandes Araújo, Ofélia de 2016-01-01 Highlights: • Life cycle of biodiesel using alternative transesterification routes is analyzed. • Bioethanol can potentially decrease CO_2 emissions of methanol biodiesel. • Contrarily, equivalent CO_2 emissions are retained and renewability is reduced. • Water footprint increases from 37.12 (methanol) to 44.88 m"3/GJ biodiesel (ethanol). • Energy efficiency is reduced from 79.37% (methanol) to 75.19 (ethanol %). - Abstract: Biodiesel is a renewable fuel produced by transesterification of triacylglicerides (TAG) contained in vegetable oils and animal fats, to yield alkyl esters (biodiesel) and glycerin. Methanol is the main transesterification agent employed resulting in FAME (fatty acid methyl esters), which is primarily obtained from natural gas reforming (fossil source). Substitution of methanol by ethanol produces FAEE (fatty acid ethyl esters) and has the potential to render biodiesel a fully renewable fuel. Although renewability is a significant driving force for the proposed alcohol replacement, environmental performance of the alternative transesterification is questioned. The answer is herein sought through a comparative Life Cycle Assessment (LCA) of the two production chains. The study tracks CO_2 emissions, energy efficiency, water and resources consumption, and environmental impacts (Acidification Potential – AP, Global Warming Potential – GWP, Eutrophication Potential – EP, and Human Toxicity Potential – TP). The boundaries of the biodiesel production chains extend from the extraction of raw-materials to its final use as transportation fuel in buses, applied to the Brazilian scenario. Results show that substitution of the methylic route with the ethylic route does not attribute significant environmental benefits. Furthermore, the ethylic route presents competitive advantages only in the category of GWP, and exhibits inferior performance in the remaining evaluated impact categories. Finally, a greater consumption of water and energy
  15. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes International Nuclear Information System (INIS) Lu Ping; Hsieh, You-Lo 2009-01-01 Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.
  16. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization International Nuclear Information System (INIS) Fu, Lihua; Lei, Zhiwen; Xu, Chuanhui; Chen, Yukun 2016-01-01 To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.
  17. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization Energy Technology Data Exchange (ETDEWEB) Fu, Lihua; Lei, Zhiwen [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Xu, Chuanhui, E-mail: [email protected] [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Yukun, E-mail: [email protected] [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, China(South China University of Technology), Guangzhou, 510640 (China) 2016-02-15 To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.
  18. Synthesis of carbon-14 labelled ethyl chloride International Nuclear Information System (INIS) Kanski, R. 1976-01-01 A new efficient method of synthesis of ethyl chloride (1,2- 14 C), based on the Ba 14 CO 3 and dry hydrogen chloride as starting materials has been developed and described. Addition of the hydrogen chloride to ethylene (1,2- 14 C), obtained from Ba 14 CO 3 , has been carried out in the presence of the AlCl 3 as catalyst. The outlined method leads to ethyl chloride (1,2- 14 C) of high specific activity. The radiochemical yield of the reaction based on the activity of barium carbonate used was 72%. (author)
  19. Flexible Polymeric Materials Prepared by Radiation Copolymerization of MMA/ Pyridene in the Presence of Acrylic Acid International Nuclear Information System (INIS) Hegazy, D.E. 2014-01-01 Gamma-irradiation initiated copolymerization of methyl methacrylate (MMA) and pyridine (Py) was carried out at room temperature.To improve the obtained copolymer functionality and molecular weight, acrylic acid (AA) was incorporated into the mixture during irradiation. The samples were characterized by thermal analysis techniques (DSC and TGA), Fourier transform infrared spectroscopy (FTIR) and UV-VIS spectrometry. Molecular weight of the obtained copolymers was determined using gel permeation chromatography (GPC). The variation of refractive index and surface hardness with the molecular weight were also investigated. The results obtained show a decrease in glass transition temperature and the hardness (shore D) of the supporting matrix for P(MMA/Py) copolymers with a pronounced increase of the molecular weight. The addition of PAA into the matrix enhanced the hardness and shifts the glass transition temperature to a little higher temperature with a pronounced decrease in the melting temperature. The obtained materials maintain good structural order and flexibility resulting from the softening effect of pyridine onto MMA matrix. The studies performed made possible the selection of experimental conditions to be adequate for the production of new co polymeric materials with high molecular weight that having good flexibility and transparent properties.
  20. The role of sodium-poly(acrylates) with different weight-average molar mass in phosphate-free laundry detergent builder systems OpenAIRE Milojević, Vladimir S.; Ilić-Stojanović, Snežana; Nikolić, Ljubiša; Nikolić, Vesna; Stamenković, Jakov; Stojiljković, Dragan 2013-01-01 In this study, the synthesis of sodium-poly(acrylate) was performed by polymerization of acrylic acid in the water solution with three different contents of potassium-persulphate as an initiator. The obtained polymers were characterized by using HPLC and GPC analyses in order to define the purity and average molar mass of poly(acrylic acid). In order to investigate the influence of sodium-poly(acrylate) as a part of carbonate/zeolite detergent builder system, secondary washing characteristics...
  21. Graft copolymerization of acrylic acid to cassava starch-Evaluation of the influences of process parameters by an experimental design method NARCIS (Netherlands) Witono, J. R.; Noordergraaf, I. W.; Heeres, H. J.; Janssen, L. P. B. M. 2012-01-01 The graft copolymerization of cassava starch with acrylic acid was investigated using a free radical initiator system (Fe2+/H2O2 redox system) in water. A comprehensive understanding of the important variables and their interaction has been obtained by applying an experimental design method. In this
  1. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution. Science.gov (United States) Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James 2017-11-15 In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
  2. Studies on atom transfer radical polymerization of acrylates and styrenes with controlled polymeric block structures OpenAIRE Ibrahim, Khalid 2006-01-01 Atom transfer radical polymerization (ATRP) was applied to homo and block copolymerization of vinyl monomers methacrylates, acrylates, and styrene with iron (FeCl2.4H2O) as the transition metal in most cases. As complexing ligand either a commercially available ligand (triphenyl phosphine) (PPh3) or synthetic aliphatic amines were used. As initiators, methyl 2-bromopropionate, ethyl 2-bromoisobutyrate, α,α-dichloroacetophenone, and poly(ethylene oxide) macroinitiator were employed. Block ...
  3. pKa value and buffering capacity of acidic monomers commonly used in self-etching primers. Science.gov (United States) Salz, Ulrich; Mücke, Angela; Zimmermann, Jörg; Tay, Franklin R; Pashley, David H 2006-06-01 The aim of this investigation was to characterize acidic monomers used in self-etching primers/adhesives by determination of their pKa values and by calculation of their calcium dissolving capacity in comparison with phosphoric and hydrochloric acid. The following acidic monomers were included in this study: 4-methacryloyloxyethyl trimellitate anhydride (4-META), 10-methacryloyloxydecyl dihydrogen phosphate (MDP), dimethacryloyloxyethyl hydrogen phosphate (di-HEMA-phosphate), ethyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate (EAEPA), 2-[4-(dihydroxyphosphoryl)-2-ox-abutyl]acrylic acid (HAEPA), and 2,4,6 trimethylphenyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate (MAEPA). The pKa values were obtained by titration with 0.1 mol/l NaOH in aqueous solution. The inflection points of the resulting potentiometric titration curve were determined as pKa values. In the case of the sparingly water-soluble acidic monomers MAEPA and 4-META, the co-solvent method using different water/ethanol ratios for MAEPA or water/acetone ratios for 4-META was used. The dissolving capacity of each acidic monomer is defined as the amount of hydroxyapatite (HA) dissolved by 1 g of acid. For each monomer, the HA dissolving capacity was calculated bythe corresponding pKa value and the molecular weight. To confirm the calculated dissolving capacities, increasing amounts of HA powder (100 mg portions) were slowly added to 15 mmol/l aqueous solutions of the monomers to determine how much HA could be dissolved in the acidic solutions. For all the investigated acidic monomers, pKal values between 1.7 to 2.5 were observed. The pKa2 values for the phosphate/phosphonate derivatives are between 7.0 and 7.3, and are comparable to phosphoric acid. For dicarboxylic acid derivatives, the pKa2 values are in the range of 4.2 to 4.5. Due to their comparable molecular weights and pKal values, the three tested acids di-HEMA phosphate, MDP and 4-META all possess comparable dissolving capacities for HA (ie, 0
  4. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium Energy Technology Data Exchange (ETDEWEB) Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy 2016-06-07 Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H
  5. Ethyl (1R*,10S*,12R*,15S*-4-Hydroxy-2-oxo-15- (2-oxo-1-pyrrolidinyl-9-oxatetracyclo[10.2.2.01,10.03,8]hexadeca-3,5,7,13-tetraene-13-carboxylate Jorge Heredia-Moya 2017-01-01 Full Text Available N-Vinylpirrolidinone reacts with (E-ethyl 5-hydroxy-3-(4-oxo-4H-chromen-3-yl acrylate (1 through a domino reaction similar to that reported reaction for ethyl vinyl ether. Inverse electron demand Diels–Alder (IEDDA–elimination-IEDDA generates isomeric tetracycles 5 and 6. The assignment of the relative stereochemistry of the products was made by comparing the proton couplings with those obtained by reaction with ethyl vinyl ether.
  6. Novel coating compositions International Nuclear Information System (INIS) Kimura, Tadashi; Kobayashi, Juichi; Nakamoto, Hideo. 1969-01-01 An acrylic coating composition rapidly hardenable by irradiating with ionizing radiations or light beams is given using hydroxyl group-containing vinyl monomers, polycarboxylic acid anhydrides, epoxy group-containing vinyl monomers and an organic solvent having a boiling point of at least 120 0 C. The process comprises the steps of first and second reactions. The first reaction takes place between one mol of a hydroxyl group of a basic polymer and at least 0.1 mol of polycarboxylic acid anhydride, wherein the basic polymer has a molecular weight ranging from 5,000 to 100,000 and consists of 1-40% by weight of vinyl monomer containing hydroxyl group, at least 30% of (meth)acrylic monomer and other vinyl monomers if required. The second reaction takes place between one mol of hydroxyl plus a carboxyl group of the thus obtained basic polymer and at least 0.1 mol of an epoxy group-containing vinyl monomer to produce a prepolymer. The prepolymer is mixed with a solvent such as ethyl benzene to produce the coating material. The electron beam accelerator energy level may be 0.1-2.0 MeV. In light beam polymerization, benzoin is particularly utilized as an intensifying substance. In one example, a basic polymer is produced by reacting 39 parts of styrene, 37 parts of ethyl acrylate, 24 parts of 2-hydroxyl ethyl acrylate, 4 parts of dimethyl amino ethyl methacrylate and others. A prepolymer is produced by reacting this basic polymer with 30 parts of glycidyl acrylate and others. (Iwakiri, K.)
  7. Azobenzene-containing LC polymethacrylates highly photosensitive in broad spectral range Czech Academy of Sciences Publication Activity Database Bobrovsky, A.; Shibaev, V.; Cigl, Martin; Hamplová, Věra; Pociecha, D.; Bubnov, Alexej 2016-01-01 Roč. 54, č. 18 (2016), s. 2962-2970 ISSN 0887-624X R&D Projects: GA ČR GA16-12150S; GA MŠk(CZ) LH15305 Institutional support: RVO:68378271 Keywords : liquid crystals * polymethacrylate * photosensitive * azo group * smectic A * photo-optical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.952, year: 2016
  8. Study of the Transformation of the Oil of Used Soya in Fatty Acid Ethyl Ester Anabel Sarracent-López 2016-07-01 Full Text Available The reuse of vegetable oils in food processing brings harmful health effects and on the other hand needs a complex treatment to discard without affecting the environment. Transformed into methyl or ethyl esters of fatty acids and glycerin by transesterification with the corresponding alcohol, can be a suitable method for treatment. It was investigated residual soybean oil from a producer of fried foods and ethanol. It is known that with this spirit the transformation process presents difficulties not listed with methanol, but at the same time does not bring the drawbacks of the latter, for toxicity and acquisition, and that since it is a derivative of the domestic sugar industry does not constitute a raw material import. We experimented with ethanol 80 %, 85 % and 90 % purity and worked 35 ºC and 50 ºC. Final yields of ethyl esters, are low compared with those obtained for similar processes with methanol, 85 % being the highest yield obtained under the conditions of the process. An assessment of costs was conducted to produce 1L of ethyl esters in the laboratory, the expenses of 0,56 pesos/L.
  9. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction DEFF Research Database (Denmark) Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H. 2015-01-01 This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low...
  10. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities. Science.gov (United States) Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao 2014-08-01 Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. Copyright © 2014 Elsevier B.V. All rights reserved.
  11. Preparation of Poly(Vinyl Alcohol) Grafted With Acrylic Acid/Styrene Binary Monomers For Selective Permeation of Heavy Metals International Nuclear Information System (INIS) Hegazy El-Sayed, A.; Abd El-Rehim, H.A.; Ali, A.M.; Aly, H.F. 1999-01-01 A study has been made to modify water-soluble poly(vinyl alcohol) (PVA), by grafting acrylic acid and styrene (AAc/Sty) binary monomers using gamma rays as initiator. The factors that affect the preparation process and grafting yield were studied and more economical grafts under the most favorable reaction conditions were obtained. It was found that the high degree of grafting of such system was obtained in presence of ethanol-water mixture in which water plays a significant role in enhancing the graft copolymerization. The critical amount of water to afford maximum grafting yield has been evaluated. The effect of comonomer composition on the grafting yield was also investigated and it was observed that using a mixture of AAc/Sty monomers influence the extent of grafting of each monomer onto the PVA substrate and the phenomenon of synergism occurs during such reaction. Also, degree of grafting increases as the content of the solvent decreases in the reaction medium. The permeation of heavy metals such as Ni and Co through the grafted membranes was investigated and efficiency of separation process is also determined
  12. Hydrophilic interaction liquid chromatography of anthranilic acid-labelled oligosaccharides with a 4-aminobenzoic acid ethyl ester-labelled dextran hydrolysate internal standard. Science.gov (United States) Neville, David C A; Alonzi, Dominic S; Butters, Terry D 2012-04-13 Hydrophilic interaction liquid chromatography (HILIC) of fluorescently labelled oligosaccharides is used in many laboratories to analyse complex oligosaccharide mixtures. Separations are routinely performed using a TSK gel-Amide 80 HPLC column, and retention times of different oligosaccharide species are converted to glucose unit (GU) values that are determined with reference to an external standard. However, if retention times were to be compared with an internal standard, consistent and more accurate GU values would be obtained. We present a method to perform internal standard-calibrated HILIC of fluorescently labelled oligosaccharides. The method relies on co-injection of 4-aminobenzoic acid ethyl ester (4-ABEE)-labelled internal standard and detection by UV absorption, with 2-AA (2-aminobenzoic acid)-labelled oligosaccharides. 4-ABEE is a UV chromophore and a fluorophore, but there is no overlap of the fluorescent spectrum of 4-ABEE with the commonly used fluorescent reagents. The dual nature of 4-ABEE allows for accurate calculation of the delay between UV and fluorescent signals when determining the GU values of individual oligosaccharides. The GU values obtained are inherently more accurate as slight differences in gradients that can influence retention are negated by use of an internal standard. Therefore, this paper provides the first method for determination of HPLC-derived GU values of fluorescently labelled oligosaccharides using an internal calibrant. Copyright © 2012 Elsevier B.V. All rights reserved.
  13. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. Science.gov (United States) Lan, Ethan I; Chuang, Derrick S; Shen, Claire R; Lee, Annabel M; Ro, Soo Y; Liao, James C 2015-09-01 Photosynthetic conversion of CO2 to chemicals using cyanobacteria is an attractive approach for direct recycling of CO2 to useful products. 3-Hydroxypropionic acid (3 HP) is a valuable chemical for the synthesis of polymers and serves as a precursor to many other chemicals such as acrylic acid. 3 HP is naturally produced through glycerol metabolism. However, cyanobacteria do not possess pathways for synthesizing glycerol and converting glycerol to 3 HP. Furthermore, the latter pathway requires coenzyme B12, or an oxygen sensitive, coenzyme B12-independent enzyme. These characteristics present major challenges for production of 3 HP using cyanobacteria. To overcome such difficulties, we constructed two alternative pathways in Synechococcus elongatus PCC 7942: a malonyl-CoA dependent pathway and a β-alanine dependent pathway. Expression of the malonyl-CoA dependent pathway genes (malonyl-CoA reductase and malonate semialdehyde reductase) enabled S. elongatus to synthesize 3 HP to a final titer of 665 mg/L. β-Alanine dependent pathway expressing S. elongatus produced 3H P to final titer of 186 mg/L. These results demonstrated the feasibility of converting CO2 into 3 HP using cyanobacteria. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
  14. [Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease]. Science.gov (United States) Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian 2016-01-01 Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.
  15. Superabsorbent materials from grafting of acrylic acid onto Thai agricultural residues by gamma irradiation International Nuclear Information System (INIS) Wongsawaeng, Doonyapong; Jumpee, Chayanit 2016-01-01 Superabsorbent polymers based on ubiquitous agricultural residues: sugarcane, water hyacinth, rice straw, coconut shell and palm fruit bunch substrates, were successfully synthesized. Gamma radiation from Co-60 was employed to graft acrylic acid (AA) onto the substrates. Rice straw exhibited the highest equilibrium swelling ratio of 78.90 g/g at 6 kGy of absorbed gamma ray dose and 14%v/v AA concentration. The rate of water absorption was rapid at the beginning and became reduced with increasing immersion time. After about 3.5 hours, the absorption reached approximately 90% of the saturation value. Temperature plays a critical role on the rate of water evaporation from the superabsorbent. As for the one experiencing 35degC-40degC temperature, the weight of the saturated superabsorbent reduced to approximately 50% of the original value in 13 hours. However, for the one experiencing room temperature (24.2degC-27.7degC), approximately 58 hours were needed to reduce the weight by half. The superabsorbent polymer was able to absorb about 203% of the polymer's dry weight and did not release urea when eluded by water. Moreover, the polymer was able to hold water very well for at least 3 weeks and did not degrade until at least 6 weeks, ensuring biodegradability. (author)
  16. The use of epoxidised palm oil products (EPOP) for the synthesis of radiation curable resins 1. Synthesis of epoxidised RBD palm olein acrylate International Nuclear Information System (INIS) Hussin bin Mohd Nor; Mohd Hilmi bin Mahmood; Hamirin bin Kifli; Masni bin Abdul Rahman; Azman bin Rafie 1990-01-01 The synthesis of acrylated olein utilizing epoxidised refined, bleached and deodorized (RBD) palm olein has been carried out by acrylation reaction. This is done by the introduction of acrylic acid into oxirane group of the epoxidised RBD palm olein. The reaction was confirmed by analytical data i.e. oxirane oxygen content, iodine value and acid value and IR spectrophotometric method. It was found that, oxirane group in triglyceride molecule of epoxidised RBD palm olein (EPOL) is attacked by acrylic acid to yield epoxidised RBD palm olein acrylate (EPOLA). The EPOLA was found curable when subjected to ultraviolet radiation
  17. Adsorption of ethyl acetate onto modified clays and its regeneration with supercritical CO2
  18. M. Cavalcante 2005-03-01 Full Text Available Modified clays were used to remove ethyl acetate from aqueous solutions. These clays were regenerated using supercritical CO2. Structural changes in the montmorillonite clay after treatment with quaternary amines were studied. The surface properties of the modified clay changed from highly hydrophilic to highly organophilic. The clay was regenerated by percolation of a stream of CO2 through the porous montmorillonite matrix. Different pressures and temperatures were employed, resulting in different fluid conditions (gas, liquid, and supercritical. The experimental data was fitted with a simplified model. The best desorption result was found under supercritical conditions. A crossover effect was observed. The capacity of the modified clay as a pollutant attenuator remained almost unchanged after a regeneration cycle.
  19. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid Reinforced with Cellulose Nanocrystals Lim Sze Lim 2017-11-01 Full Text Available pH-sensitive poly(acrylic acid (PAA hydrogel reinforced with cellulose nanocrystals (CNC was prepared. Acrylic acid (AA was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.
  20. Radiation Induced Preparation of Polymer Membranes Grafted with Basic and Acidic Monomers for Application in Wastewater Treatment Energy Technology Data Exchange (ETDEWEB) Ajji, Z [Polymer Technology Division, Radiation Technology Department, Atomic Energy Commission of Syria (AECS), 17th Nissan Street, Kafar Sousah, Damascus (Syrian Arab Republic) 2012-09-15 Polymer membranes (PP and PE) had been grafted with basic and acidic functional groups using gamma radiation. Two binary mixtures had been used for the grafting reactions: acrylic acid/N-vinyl pyrrolidone, and acrylic acid/N-vinyl imidazole. The influence of different reaction parameters on the grafting yield had been investigated as: type of solvent and solvent composition, comonomer concentration and composition, addition of inhibitors, and dose. Water uptake with respect to the grafting yield had also been evaluated. The ability of PP films, grafted with acrylic acid/ vinyl pyrrolidone, to uptake heavy metal ions such as Hg{sup 2+}, Pb{sup 2+}, Cd{sup 2+}, Co{sup 2+}, Ni{sup 2+} and Cu{sup 2+} was elaborated. The uptake of the metal ions increases with increasing the grafting yield. Furthermore, the Pb{sup +2} uptake was much higher than the uptake of the Hg{sup 2+} and Cd{sup 2+} ions. The membranes may be considered for the separation of Pb{sup 2+} ions from Hg{sup 2+} or Cd{sup 2+} ions. Also the ability of PE films, grafted with acrylic acid/ N-vinyl imidazole to uptake heavy metal ions such as Pb{sup 2+}, Cd{sup 2+}, Co{sup 2+} and Ni{sup 2+} was elaborated. An increase in the uptake of the metal ions was observed as the grafting yield increased. (author)
  21. Non-catalytic production of fatty acid ethyl esters from soybean oil with supercritical ethanol in a two-step process using a microtube reactor International Nuclear Information System (INIS) Silva, Camila da; Lima, Ana Paula de; Castilhos, Fernanda de; Cardozo Filho, Lucio; Oliveira, J. Vladimir 2011-01-01 This work reports the production of fatty acid ethyl esters (FAEE) from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process using different reactor configurations. Experiments were performed in a microtube reactor with experimental simulation of two reactors operated in series and a reactor with recycle, both configurations at a constant temperature of 573 K, pressure of 20 MPa and oil to ethanol mass ratio of 1:1. Results show that the configurations studied with intermediate separation of glycerol afford higher conversions of vegetable oil to its fatty acid ethyl ester derivatives when compared to the one-step reaction, with relatively low decomposition of fatty acids (<3.0 wt%).
  1. Thermodynamic Analysis of the Conformational Transition in Aqueous Solutions of Isotactic and Atactic Poly(Methacrylic Acid and the Hydrophobic Effect Ksenija Kogej 2016-04-01 Full Text Available The affinity of amphiphilic compounds for water is important in various processes, e.g., in conformational transitions of biopolymers, protein folding/unfolding, partitioning of drugs in the living systems, and many others. Herein, we study the conformational transition of two isomer forms of poly(methacrylic acid (PMA, isotactic (iPMA and atactic (aPMA, in water. These isomers are chemically equivalent and differ only in the arrangement of functional groups along the chain. A complete thermodynamic analysis of the transition of the PMA chains from the compact to the extended form (comprising the conformational transition in water in the presence of three alkali chlorides is conducted by determining the free energy, enthalpy, and entropy changes of the process as a function of temperature, and therefrom also the heat capacity change. The heat capacity change of the transition is positive (+20 J/K mol for aPMA and negative (−50 J/K mol for iPMA. This result suggests a different affinity of PMA isomers for water. The conformational transition of iPMA is parallel to the transfer of polar solutes into water, whereas that of aPMA agrees with the transfer of nonpolar solutes into water.
  2. A comparative study of the chemical kinetics of methyl and ethyl propanoate KAUST Repository Farooq, Aamir 2014-10-01 High temperature pyrolysis of methyl propanoate (CH3CH 2C(O)OCH3) and ethyl propanoate (CH3CH 2C(O)OCH2CH3) was studied behind reflected shock waves at temperatures of 1250-1750 K and pressure of 1.5 atm. Species time-histories were recorded for CO, CO2, C2H4, and H2O using laser absorption methods over a test time of 1 ms. Pyrolysis of methyl propanoate (MP) appears to be faster than that of ethyl propanoate (EP) under the present experimental conditions, where CO and CO 2 reach their plateau values faster for MP at a specific temperature and fuel concentration. Higher plateau values are reached for CO in case of MP while the CO2 levels are similar for the two ester fuels. Ethylene production is larger for EP due to the presence of six-centered ring elimination reaction that produces ethylene and propanoic acid. Very little H2O is produced during MP pyrolysis in contrast with appreciable H2O production from EP. Sensitivity and rate-of-production analyses were carried out to identify key reactions that affect the measured species profiles. Previous kinetic mechanisms of Yang et al. (2011) [1,2] and Metcalf et al. (2009, 2007) [3,4] were used as base models and then refined to propose a new MP/EP pyrolysis mechanism. © 2014 Elsevier Ltd. All rights reserved.
  3. A comparative study of the chemical kinetics of methyl and ethyl propanoate KAUST Repository Farooq, Aamir; Davidson, D.F.; Hanson, R.K.; Westbrook, C.K. 2014-01-01 High temperature pyrolysis of methyl propanoate (CH3CH 2C(O)OCH3) and ethyl propanoate (CH3CH 2C(O)OCH2CH3) was studied behind reflected shock waves at temperatures of 1250-1750 K and pressure of 1.5 atm. Species time-histories were recorded for CO, CO2, C2H4, and H2O using laser absorption methods over a test time of 1 ms. Pyrolysis of methyl propanoate (MP) appears to be faster than that of ethyl propanoate (EP) under the present experimental conditions, where CO and CO 2 reach their plateau values faster for MP at a specific temperature and fuel concentration. Higher plateau values are reached for CO in case of MP while the CO2 levels are similar for the two ester fuels. Ethylene production is larger for EP due to the presence of six-centered ring elimination reaction that produces ethylene and propanoic acid. Very little H2O is produced during MP pyrolysis in contrast with appreciable H2O production from EP. Sensitivity and rate-of-production analyses were carried out to identify key reactions that affect the measured species profiles. Previous kinetic mechanisms of Yang et al. (2011) [1,2] and Metcalf et al. (2009, 2007) [3,4] were used as base models and then refined to propose a new MP/EP pyrolysis mechanism. © 2014 Elsevier Ltd. All rights reserved.
  4. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate DEFF Research Database (Denmark) Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D. 2007-01-01 The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...
  5. Aqueous lubricating properties of charged (ABC) and neutral (ABA) triblock copolymer chains DEFF Research Database (Denmark) Røn, Troels; Javakhishvili, Irakli; Patil, Navin J. 2014-01-01 Application of charged polymer chains as additives for lubricating neutral surfaces in aqueous envi- ronment, especially via polymer physisorption, is generally impeded by the electrostatic repulsion be- tween adjacent polymers on the surface. In this study, we have investigated the adsorption an...... improvement compared to fully charged polymer chains, e.g. poly(acrylic acid)- block -poly(2-methoxyethyl acrylate) (PAA- b -PMEA), which is attributed to dilution of charged moieties on the surface and subsequent improvement of the lubricating fi lm stability......Application of charged polymer chains as additives for lubricating neutral surfaces in aqueous envi- ronment, especially via polymer physisorption, is generally impeded by the electrostatic repulsion be- tween adjacent polymers on the surface. In this study, we have investigated the adsorption...... and aqueous lubricating properties of an amphiphilic triblock copolymer, comprised of a neutral poly(ethylene glycol) (PEG) block, a hydrophobic poly(2-methoxyethyl acrylate) (PMEA) block, and a charged poly(methacrylic acid) (PMAA) block, namely PEG- b -PMEA- b -PMAA. After adsorption onto a nonpolar...
  6. Study of PVC membrane grafted by Acrylic Acid, Acrylonitrile and Acrylamide using preirradiation method International Nuclear Information System (INIS) Kattan, M.; Al-Kasseri, H. 2015-03-01 Grafting of acrylic acid, acrylamide and acrylonitrile onto poly vinyl chloride (PVC) films using gamma radiation has been carried out by both type direct and preirradiation methods. The effect of different parameter such as monomer concentration, inhibitor concentration, reaction temperature, reaction time and irradiation dose on the grafting yield were investigated. It was found that the grafting yield depends on these parameters. The grafting yield was strongly monomer dependent and grafting method: the highest was found for AAc by the preirradiation method. The samples were characterized by tensile strength measurement, swilling and ion uptake. The highest increase in swilling was observed on samples grafted with AAc by the preirradiation method.(author)
  7. Catalytic production of levulinic acid and ethyl levulinate from uniconazole-induced duckweed (Lemna minor). Science.gov (United States) Liu, Chunguang; Feng, Qingna; Yang, Jirui; Qi, Xinhua 2018-05-01 Duckweed (Lemna minor) with a high starch content of 50.4% was cultivated by uniconazole-induction method. The cultivated duckweed was used to produce value-added chemicals such as glucose, levulinic acid and formic acid in diluted HCl aqueous solution. A high glucose yield of 93.4% (471 g/kg based on loading duckweed mass) could be achieved at 180 °C in short reaction time, and the generated glucose was converted into levulinic acid and formic acid with yields of 52.0% and 34.1%, respectively, for 150 min, corresponding to 262 g/kg levulinic acid yield and 171 g/kg formic acid yield based on the mass of loading duckweed, respectively. Moreover, the duckweed was efficiently converted to ethyl levulinate with 55.2% yield (400.6 g/kg) at 200 °C in ethanol. This work provides a promising strategy for the production of value-added chemicals from phytoplankton that is able to purify the wastewater containing high content of P and N. Copyright © 2018 Elsevier Ltd. All rights reserved.
  8. Synergic extraction of some lanthanide and actinide elements by a mixture of bis(2-ethyl hexyl) phosphoric acid and dinonylnapthalene - sulfonic acid in aromatic diluents International Nuclear Information System (INIS) Raieh, M.A.; El-Dessouky, M.M. 1985-01-01 Extraction of lanthanides and actinides were found to be synergetically enhanced by a mixture of bis(2-ethyl hexyl) phosphoric acid (HA) and dinonylnaphthalene sulfonic acid (HD) in aromatic diluents covering a wide range of dielectric constants. The main extracted species is found to be MAsub(2)Hsub(m-1)Dsub(m). Experimental results indicate that the extraxtion mechanism is governed by the extraction of HD in the organic phase. (author)
  9. Accelerated healing of cutaneous leishmaniasis in non-healing BALB/c mice using water soluble amphotericin B-polymethacrylic acid. Science.gov (United States) Corware, Karina; Harris, Debra; Teo, Ian; Rogers, Matthew; Naresh, Kikkeri; Müller, Ingrid; Shaunak, Sunil 2011-11-01 Cutaneous leishmaniasis (CL) is a neglected tropical disease that causes prominent skin scaring. No water soluble, non-toxic, short course and low cost treatment exists. We developed a new water soluble amphotericin B-polymethacrylic acid (AmB-PMA) using established and scalable chemistries. AmB-PMA was stable for 9 months during storage. In vitro, it was effective against Leishmania spp. promastigotes and amastigote infected macrophages. It was also less toxic and more effective than deoxycholate-AmB, and similar to liposomal AmB. Its in vivo activity was determined in both early and established CL lesion models of Leishmania major infection in genetically susceptible non-healing BALB/c mice. Intradermal AmB-PMA at a total dose of 18 mg of AmB/kg body weight led to rapid parasite killing and lesion healing. No toxicity was seen. No parasite relapse occurred after 80 days follow-up. Histological studies confirmed rapid parasite clearance from macrophages followed by accelerated fibroblast mediated tissue repair, regeneration and cure of the infection. Quantitative mRNA studies of the CL lesions showed that accelerated healing was associated with increased Tumour Necrosis Factor-α and Interferon-γ, and reduced Interleukin-10. These results suggest that a cost-effective AmB-PMA could be used to pharmacologically treat and immuno-therapeutically accelerate the healing of CL lesions. Copyright © 2011 Elsevier Ltd. All rights reserved.
  10. Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates via direct dehydrogenative C(sp2)-O cross-coupling. Science.gov (United States) Wu, Yun-Bin; Xie, Dan; Zang, Zhong-Lin; Zhou, Cheng-He; Cai, Gui-Xin 2018-04-26 An efficient olefination protocol for the oxidative dehydrogenation of phenols and acrylates has been achieved using a palladium catalyst and O2 as the sole oxidant. This reaction exhibits high regio- and stereo-selectivity (E-isomers) with moderate to excellent isolated yields and a wide substrate scope (32 examples) including ethyl vinyl ketone and endofolliculina.
  11. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid). Science.gov (United States) Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Jiang, Tao; Krogman, Nicholas R; Singh, Anurima; Allcock, Harry R; Laurencin, Cato T 2008-01-01 Previously we demonstrated the ability of ethyl glycinato substituted polyphosphazenes to neutralize the acidic degradation products and control the degradation rate of poly(lactic acid-glycolic acid) (PLAGA) by blending. In this study, blends of high strength poly[(50% ethyl alanato) (50% p-phenyl phenoxy) phosphazene] (PNEA(50)PhPh(50)) and 85:15 PLAGA were prepared using a mutual solvent approach. Three different solvents, methylene chloride (MC), chloroform (CF) and tetrahydrofuran (THF) were studied to investigate solvent effects on blend miscibility. Three different blends were then fabricated at various weight ratios namely 25:75 (BLEND25), 50:50 (BLEND50), and 75:25 (BLEND75) using THF as the mutual solvent. The miscibility of the blends was evaluated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Among these, BLEND25 was miscible while BLEND50 and BLEND75 were partially miscible. Furthermore, BLEND25 formed apatite layers on its surface as evidenced in a biomimetic study performed. These novel blends showed cell adhesion and proliferation comparable to PLAGA. However, the PNEA(50)PhPh(50) component in the blends was able to increase the phenotypic expression and mineralized matrix synthesis of the primary rat osteoblasts (PRO) in vitro. Blends of high strength PNEA(50)PhPh(50) and 85:15 PLAGA are promising biomaterials for a variety of musculoskeletal applications.
  12. Investigations of 1-(4-propylamino-3-ethyl imidazolium tetrafluoroborate ionic liquid capturing CO2 Yang Lijuan 2013-01-01 Full Text Available 1-(4-propylamino-3-ethyl imidazolium ([Paeim]+ Tetrafluoroborate([BF4]- Ionic liquid (IL, capturing CO2, was explored systematically at B3LYP/6-311++G** and mp2/6-311++G** level. The stable geometries of ILs and capture products were optimized, the energies of these geometries were obtained and corrected by Zero-point-vibration-energy and basis set superposition error correction. The results show that the interactions between [Paeim]+and [BF4]-are mainly displayed as hydrogen bonds, but the interaction energies exceeds -328 kJ/mol. Further analysis found that the interactions are reinforced by charge dispersion and charge redistribution of ion-pair, and that electrostatic attraction contributes much to the interaction energies. This IL system capturing CO2belongs to the class of physical sorption with 1:1 molar absorption ratio, the absorption energy is nearly -18kJ/moland thus this IL may have low energy consumption when regenerated from IL-CO2.
  13. Characterization of Functionalized Acrylic acid /4- Vinyl Pyridine Graft Copolymers International Nuclear Information System (INIS) Kamal, H.; Mahmoud, Gh.A.; Hegazy, D.E. 2009-01-01 Properties and characterization of the membranes prepared by radiation grafting of acrylic acid (AAc) or/ and 4-vinyl pyridine (4VP) onto low density polyethylene (LDPE) and polypropylene (PP) films were carried out. The FTIR spectra for the grafted membranes were studied to evaluate the structure change as a result of grafting. The swelling behaviour of the graft copolymer in methanol was studied. It was found that the grafting of AAc and/ or 4- VP onto LDPE and PP resulted in introducing good hydrophilic properties to such polymer substrates. The hydrophilic properties were directly proportional to the amount of functional groups. The mechanical properties (Young's modulus, elongation percent and tensile strength) of the grafted membranes also, have been investigated. As the grafting degree increases, the modulus also increases. Increasing the hydrophilicity of the membranes by chemical treatment enhances its mechanical properties. The thermal parameters of the grafted membranes such as δH m1 . δH m2 , and T rc have been also studied by using DSC
  14. Extraction, Separation, and Purification of Blueberry Anthocyanin Using Ethyl Alcohol Zhe Gao 2017-11-01 Full Text Available Blueberry contains many substances that are important to the human body and can prevent cardiovascular diseases, protect the retina, and soften blood vessels. Anthocyanin, which is extracted from blueberry, can activate the retina, strengthen vision, reduce serum cholesterol, triglyceride and high-density lipoprotein, and protect cell nucleus tissues from radical oxidation; hence, blueberry is of importance to scientists from different countries. In this study, anthocyanin was extracted and separated from blueberry using ethyl alcohol to investigate the effects of factors, such as ethyl alcohol volume ratio on anthocyanin extraction and separation technologies. The extracting solution was then purified using the macroreticular resin purification method to investigate the effects of ethyl alcohol concentration and eluent dosage on anthocyanin extraction during purification. The research results demonstrated that 60 % ethyl alcohol volume fraction, 1 : 10 mass ratio of solid to liquid, and 60 °C ultrasonic temperature were the best conditions for anthocyanin extraction. The best purification conditions were 95 % ethyl alcohol, which had been acidized by 0.3 % hydrochloric acid and 70 ml of eluent. This work provides a reference for the application of ethyl alcohol in anthocyanin extraction.
  15. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Science.gov (United States) Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F 2016-08-01 Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.
  16. Fixation of some chemically modified reactive dye during gamma irradiation of cotton fabrics in presence of vinyl and acrylic monomers International Nuclear Information System (INIS) Zohdy, M.H.; El-Naggar, A.M.; Abdallah, W.A. 1999-01-01 The radiation grafting of vinyl sulfone dye having an activated double bond in presence of styrene monomer or its mixtures with ethyl acrylate onto cotton fabric has been investigated. The chemical reaction of the vinyl sulfone form with peroxy radicals on cotton fabric through covalent bonding is tested by extracting the dyed samples in 50% aqueous DMF solution. It was found that the presence of styene monomer in the dyeing solution is essential for the reaction or grafting of the vinyl sulfone dye. However, when a constant styrene concentration of 5% was used in the dye bath, the color strength expressed as K/S was found to increase by increasing the dye concentration. The results showed that the color strength obtained in case of using 10% ethyl acrylate is much lower than in the case of using the same concentration of styrene monomer. A solvent composition of equal ratios of methanol and water has been proven to be suitable to produce the highest improvement in the color strength. The irradiation dose was found to play an important role in initiating the reaction of the vinyl sulfone dye
  17. Vinyl Acetate/butyl acrylate/acrylate Research of Ternary Soap-free Emulsion Polymerization Xiao Li-guang 2016-01-01 Full Text Available Through the vinyl acetate/butyl acrylate/acrylic acrylic emulsion preparation without soap vinegar, with solid content, gel, emulsion stability and film forming properties and tensile strength as the main index to study the effect of raw materials on the properties of emulsion. Through the infrared spectrometer soap-free emulsion for microscopic analysis research. Study of the ternary soap-free vinegar acrylic emulsion with good performance.
  18. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol) Science.gov (United States) Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl 2013-01-01 The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...
  19. Ultraviolet curing of acrylated liquid natural rubber for surface coating application Kannikar Kwanming 2009-01-01 Full Text Available Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR prior obtained from LNR with formic acid and hydrogen peroxide in the ratio of 2:1 by weight in toluene at 80oC for 6, 9, 12, 18, and 24 hrs. It was found that the percentage of acrylate grafted onto liquid natural rubber depended on the reaction time. Surface coating was performed by using acrylated liquid natural rubber and 1,6-hexanediol diacrylate (HDDA or tripropylene glycol diacrylate (TPGDA as a crosslinker and Irgarcure 184 or Irgarcure 651 as a photoinitiator under UV exposure for 30, 60, and 90 seconds. The hardness test of cured products was investigated using the Pencil hardness test at pencil level of 2B to 6H. It was found that the highest hardness of surface coating was at pencil level of 4H for the product using TPGDA and Irgacure 651 in the ratio of 80:10 parts per hundred of rubber (phr. The cured products were able to resist to 2% H2SO4 and distilled water for more than 24 hrs.
  20. Evaluation of Poly(2-Ethyl-2-Oxazoline) Containing Copolymer Networks of Varied Composition as Sustained Metoprolol Tartrate Delivery Systems OpenAIRE Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka 2014-01-01 Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron ...
  1. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils. Science.gov (United States) Wang, Shu; Robertson, Megan L 2015-06-10 Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between
  2. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer. Science.gov (United States) Rankin, Keegan; Mabury, Scott A 2015-05-19 The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.
  3. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor KAUST Repository Zeng, Gaofeng 2012-11-07 Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters or hydrogen acceptors (see scheme). © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
  4. Improved stability and enhanced efficiency to degrade chlorimuron-ethyl by the entrapment of esterase SulE in cross-linked poly (γ-glutamic acid)/gelatin hydrogel Energy Technology Data Exchange (ETDEWEB) Yang, Liqiang [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); University of Chinese Academy of Sciences, Beijing (China); Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Xu, MingKai [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Zhang, Huiwen, E-mail: [email protected] [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China) 2015-04-28 Highlights: • Esterase SulE was entrapped in a three-dimensional network of CPE. • CPE-SulE obviously improved thermostability, pH stability and reusability. • CPE-SulE displayed obviously enhanced efficiency in degrading chlorimuron-ethyl. • The three-dimensional network and kinetic parameters of CPE-SulE were analysed. • CPE-SulE possesses the great potential to remediate chlorimuron-ethyl contaminated in situ. - Abstract: Free enzymes often undergo some problems such as easy deactivation, low stability, and less recycling in biodegradation processes, especially in soil condition. A novel esterase SulE, which is responsible for primary degradation of a wide range of sulfonylurea herbicides by methyl or ethyl ester de-esterification, was expressed by strain Hansschlegelia sp. CHL1 and entrapped for the first time in an environment-friendly, biocompatible and biodegradable cross-linked poly (γ-glutamic acid)/gelatin hydrogel (CPE). The activity and stability of CPE-SulE were compared with free SulE under varying pH and temperature condition by measuring chlorimuron-ethyl residue. Meanwhile, the three-dimensional network of CPE-SulE was verified by scanning electron microscopy (SEM). The results showed that CPE-SulE obviously improved thermostability, pH stability and reusability compared with free SulE. Furthermore, CPE-SulE enhanced degrading efficiency of chlorimuron-ethyl in both soil and water system, especially in acid environment. The characteristics of CPE-SulE suggested the great potential to remediate chlorimuron-ethyl contaminated soils in situ.
  5. Improved stability and enhanced efficiency to degrade chlorimuron-ethyl by the entrapment of esterase SulE in cross-linked poly (γ-glutamic acid)/gelatin hydrogel International Nuclear Information System (INIS) Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Xu, MingKai; Zhang, Huiwen 2015-01-01 Highlights: • Esterase SulE was entrapped in a three-dimensional network of CPE. • CPE-SulE obviously improved thermostability, pH stability and reusability. • CPE-SulE displayed obviously enhanced efficiency in degrading chlorimuron-ethyl. • The three-dimensional network and kinetic parameters of CPE-SulE were analysed. • CPE-SulE possesses the great potential to remediate chlorimuron-ethyl contaminated in situ. - Abstract: Free enzymes often undergo some problems such as easy deactivation, low stability, and less recycling in biodegradation processes, especially in soil condition. A novel esterase SulE, which is responsible for primary degradation of a wide range of sulfonylurea herbicides by methyl or ethyl ester de-esterification, was expressed by strain Hansschlegelia sp. CHL1 and entrapped for the first time in an environment-friendly, biocompatible and biodegradable cross-linked poly (γ-glutamic acid)/gelatin hydrogel (CPE). The activity and stability of CPE-SulE were compared with free SulE under varying pH and temperature condition by measuring chlorimuron-ethyl residue. Meanwhile, the three-dimensional network of CPE-SulE was verified by scanning electron microscopy (SEM). The results showed that CPE-SulE obviously improved thermostability, pH stability and reusability compared with free SulE. Furthermore, CPE-SulE enhanced degrading efficiency of chlorimuron-ethyl in both soil and water system, especially in acid environment. The characteristics of CPE-SulE suggested the great potential to remediate chlorimuron-ethyl contaminated soils in situ
  6. Synthesis and characterization of copolymers 4,5-dihydroisoxazole and (-)-menthyl acrylates International Nuclear Information System (INIS) Passo, Joel A.; Merlo, Aloir A.; Eccher, Juliana; Bechtold, Ivan H.; Kelly, Stephen M. 2012-01-01 Five monomers 5-[4-(5-cyano-4,5-dihydroisoxazol-3-yl)phenoxy]undecyl acrylate (7a); n-alkyl 3-{4-[5-(acryloyloxyundecyl)oxyphenyl]}-4,5-dihydroisoxazole-5-carboxylate (7b,c for n-butyl and n-hexyl, respectively); 3-{4-[5-(acryloyloxyundecyl) oxyphenyl]}-4,5-dihydroisoxazole-5-carboxylic acid (7d) and (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl acrylate (9) and the corresponding copolymers 10a-d,11 and homopolymers 12 from 7a and 13 from 9 were designed and synthesized. Except for acrylate 9 which is derived from (-)-menthol, all of the monomers belong to the series containing the isoxazoline ring linked to the acrylate unit by a flexible spacer chain of eleven methylene units. They presented low glass temperature and despite birefringence behavior, these copolymers showed no mesomorphic properties. (author)
  7. Alkylation of deoxyribonucleic acid by carcinogens dimethyl sulphate, ethyl methanesulphonate, N-ethyl-N-nitrosourea and N-methyl-N-nitrosourea International Nuclear Information System (INIS) Swenson, D.H.; Lawley, P.D. 1978-01-01 The ethyl phosphotriester of thymidylyl(3'-5')thymidine, dTp((Et) dT, was identified as a product from the reaction of DNA with N-ethyl-N-nitrosourea. Enzymic degradation to yield alkyl phosphotriesters from DNA alkylated by this carcinogen, and by N-methyl-N-nitrosourea, dimethyl sulphate and ethyl methanesulphonate was studied quantitatively, and the relative yields of the triesters dTp(Alk)dT were determined. The relative reactivity of the phosphodiester group dTpdT to each of the four carcinogens was thus obtained, and compared with that of DNA overall, or with that of the N-7 atom of guanine in DNA. The results are related to steric factors, and the electrophilic character of each carcinogen. (author)
  8. Steel Protective Coating Based on Plasticized Epoxy Acrylate Formulation Cured by Electron Beam Irradiation International Nuclear Information System (INIS) Ibrahim, M.S.; Said, H.M.; Mohamed, I.M.; Mohamed, H.A.; Kandile, N.G. 2011-01-01 Electron beam (EB) was used to cure coatings based on epoxy acrylate oligomer (EA) and different plasticizers such as epoxidized soybean oil, glycerol and castor oil. The effect of irradiation doses (10, 25, 50 kGy) on the curing epoxy acrylate formulations containing plasticizers was studied. In the addition, the effect of the different plasticizers on the end use performance properties of epoxy acrylate coatings such as hardness, bending, adhesion, acid and alkali resistance tests were investigated. It was observed that the incorporation of castor oil in epoxy acrylate, diluted by 1,6 hexandiol diacrylate monomer (HD) with a ratio (EA 70%, HD 20%, castor oil 10%) under the dose 10 kGy improved the physical, chemical and mechanical properties of cured films than the other plasticizers. On the other hand, sunflower free fatty acids were epoxidized in-situ under well established conditions and then was subjected to react with aniline in sealed ampoules under inert atmosphere at 140 degree C. The produced adduct was added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was observed that the formula containing 0.4 gm of aniline adduct / 100 gm epoxy acrylate resin gave the best corrosion protection for carbon steel
  9. Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications International Nuclear Information System (INIS) Müller, Christiane; Leithner, Katharina; Hauptstein, Sabine; Hintzen, Fabian; Salvenmoser, Willi; Bernkop-Schnürch, Andreas 2013-01-01 Particle diffusion through the intestinal mucosal barrier is restricted by the viscoelastic and adhesive properties of the mucus gel layer, preventing their penetration to the underlying absorptive endothelial cells. To overcome this natural barrier, we developed nanoparticles which have a remarkable ability to cleave mucoglycoprotein substructures responsible for the structural and rheological properties of mucus. After rheological screening of various mucolytic proteases, nanoparticles composed of poly(acrylic acid) and papain were prepared and characterized regarding particle size and zeta potential. Analysis of nanoparticles showed mean diameters sub-200 nm (162.8–198.5 nm) and negative zeta potentials advancing the mobility in mucus gel. Using diffusion chamber studies and the rotating diffusion tubes method, we compared the transport rates of papain modified (PAPC) and unaltered poly(acrylic acid) (PAA) particles through freshly excised intestinal porcine mucus. Results of the diffusion assays demonstrated strongly enhanced permeation behavior of PAPC particles owing to local mucus disruption by papain. Improved transport rates, reduction in mucus viscosity and the retarded release of hydrophilic macromolecular compounds make proteolytic enzyme functionalized nanoparticles of substantial interest for improved targeted drug delivery at mucosal surfaces. Although cytotoxicity tests of the nanoparticles could not be performed, safety of papain and PAA was already verified making PAPC particles a promising candidate in the pharmaceutical field of research. The focus of the present study was the development of particles which penetrate the mucus barrier to approach the underlying epithelium. Improvements of particles that penetrate the mucus followed by cell uptake in this direction are ongoing.
  10. Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications Science.gov (United States) Müller, Christiane; Leithner, Katharina; Hauptstein, Sabine; Hintzen, Fabian; Salvenmoser, Willi; Bernkop-Schnürch, Andreas 2013-01-01 Particle diffusion through the intestinal mucosal barrier is restricted by the viscoelastic and adhesive properties of the mucus gel layer, preventing their penetration to the underlying absorptive endothelial cells. To overcome this natural barrier, we developed nanoparticles which have a remarkable ability to cleave mucoglycoprotein substructures responsible for the structural and rheological properties of mucus. After rheological screening of various mucolytic proteases, nanoparticles composed of poly(acrylic acid) and papain were prepared and characterized regarding particle size and zeta potential. Analysis of nanoparticles showed mean diameters sub-200 nm (162.8-198.5 nm) and negative zeta potentials advancing the mobility in mucus gel. Using diffusion chamber studies and the rotating diffusion tubes method, we compared the transport rates of papain modified (PAPC) and unaltered poly(acrylic acid) (PAA) particles through freshly excised intestinal porcine mucus. Results of the diffusion assays demonstrated strongly enhanced permeation behavior of PAPC particles owing to local mucus disruption by papain. Improved transport rates, reduction in mucus viscosity and the retarded release of hydrophilic macromolecular compounds make proteolytic enzyme functionalized nanoparticles of substantial interest for improved targeted drug delivery at mucosal surfaces. Although cytotoxicity tests of the nanoparticles could not be performed, safety of papain and PAA was already verified making PAPC particles a promising candidate in the pharmaceutical field of research. The focus of the present study was the development of particles which penetrate the mucus barrier to approach the underlying epithelium. Improvements of particles that penetrate the mucus followed by cell uptake in this direction are ongoing.
  11. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts KAUST Repository Drees, Markus 2012-08-10 Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  12. Antibacterial Effect of Acrylic Acid-Grafted Cotton, Wool and Polyester Fabrics on the Growth of Staphylococcus Aureus International Nuclear Information System (INIS) El-Gendy, E.H.; Hussien, H.A.; Hassan, A.A. 2008-01-01 The effects of nutrient time (t) and acrylic acid graft yield (GY) on the growth of Staphylococcus aureus bacteria on cotton, wool and polyester fabrics have been studied. The bacterial growth increases with the increase in t after a 6 h-incubation period (IP). For cotton fabrics, the IP increases from 6 h to 12 h as the GY increases to 20%. The initial growth rate (R) is found to decrease with the increase in graft yield. The order (n) and rate constant (k) of the growth process are calculated at 303 K from the logarithmic dependence of R on GY. Both kinetic parameters are dependent on the type of fabric. The growth rate constant k is the lowest for grafted cotton and the highest for grafted polyester fabrics. The inhibiting effect of grafted poly acrylic acid (PAA), on the S. aureus growth rate is attributed to the release of hydrogen ions (H + ) from the grafts into the nutrient aqueous solution. The accumulation of H + ions, which increase with the increase in GY, at the cell wall and their possible diffusion inside the cell cause a perturbing effect that impairs the viability of the cells. This is observed from the increase in the polysaccharide layer around the cell due to increase in GY to 20%. Transmission electron micrographs revealed the existence of considerable changes in the shape of the cells as a result of PAA grafted on the fabrics
  13. Biochar as porous media for thermally-induced non-catalytic transesterification to synthesize fatty acid ethyl esters from coconut oil International Nuclear Information System (INIS) Jung, Jong-Min; Lee, Jechan; Choi, Dongho; Oh, Jeong-Ik; Lee, Sang-Ryong; Kim, Jae-Kon; Kwon, Eilhann E. 2017-01-01 Highlights: • Biodiesel production using renewable resources. • Thermally-induced non-catalytic transesterification. • Synthesis of fatty acid ethyl esters without conventional catalysts. • Using biochar as porous medium in the non-catalytic transesterification. - Abstract: This study put great emphasis on evaluating biochar as porous media for the thermally-induced non-catalytic transesterification reaction to synthesize fatty acid ethyl esters (FAEE) from coconut oil. Thermogravimetric analysis (TGA) of coconut oil experimentally justified that the bond dissociation of fatty acid from the backbone of triglycerides (TGs) could be achieved, which finding could be applied to the non-catalytic transesterification reaction. To use biochar as porous medium, the surficial morphology of maize residue biochar (MRB) was characterized, revealing that biochar possessed the wider pore size distribution ranging from meso- to macro-pores than SiO 2 . The highest yield of FAEE from non-catalytic transesterification of coconut oil in the presence of MRB was 87% at 380 °C. To further enhance the FAEE yield, further studies associated with the production of FAEE with biochar made from different biomasses and various pyrolytic conditions should be performed.
  14. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking Science.gov (United States) Sheikh, N.; Jalili, L.; Anvari, F. 2010-06-01 Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).
  15. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking International Nuclear Information System (INIS) Sheikh, N.; Jalili, L.; Anvari, F. 2010-01-01 Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).
  16. Radiation-induced synthesis of poly(acrylic acid) nanogels Science.gov (United States) Matusiak, Malgorzata; Kadlubowski, Slawomir; Ulanski, Piotr 2018-01-01 Nanogel is a two-component system of a diameter in the range of tens of nanometers, consisting of an intramolecularly crosslinked polymer chain and solvent, typically water, filling the space between segments of the macromolecule. Microgels are bigger than nanogels and their size range is between 100 nm to 100 μm. One of the methods used for synthesizing nanogels is linking the segments of a single macromolecule with the use of ionizing radiation, by intramolecular recombination of radiation-generated polymer radicals. The main advantage of this technique is absence of monomers, catalysts, surfactants or crosslinking agents. This method is an interesting alternative way of synthesizing polymeric carriers for biomedical applications. The aim of the study was radiation synthesis and characterization of poly(acrylic acid) - PAA - nanogels and microgels. The physico-chemical properties were described by determination of weight-average molecular weight and dimensions (radius of gyration, hydrodynamic radius) of the nanogels and microgels. Influence of polymer concentration and dose on these parameters was analyzed. Adjusting the PAA concentration and absorbed dose, one can control the molecular weight and dimensions of nanogels. The solutions of PAA were irradiated with two sources of ionizing radiation: γ-source and electron accelerator. The former method yields mainly microgels due to prevailing intermolecular crosslinking, while the latter promotes intramolecular recombination of PAA-derived radicals and in consequence formation of nanogels. In the future radiation-synthesized PAA nanogels, after functionalization, will be tested as carriers for delivering radionuclides to the tumor cells.
  17. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization Energy Technology Data Exchange (ETDEWEB) Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: [email protected]; Salehi-Mobarakeh, Hamid 2017-03-15 Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.
  18. Interaction between Al3+ and acrylic acid and polyacrylic acid in acidic aqueous solution: a model experiment for the behavior of Al3+ in acidified soil solution. Science.gov (United States) Etou, Mayumi; Masaki, Yuka; Tsuji, Yutaka; Saito, Tomoyuki; Bai, Shuqin; Nishida, Ikuko; Okaue, Yoshihiro; Yokoyama, Takushi 2011-01-01 From the viewpoint of the phytotoxicity and mobility of Al(3+) released from soil minerals due to soil acidification, the interaction between Al(3+) and acrylic acid (AA) and polyacrylic acid (PAA) as a model compound of fulvic acid was investigated. The interaction was examined at pH 3 so as to avoid the hydrolysis of Al(3+). The interaction between Al(3+) and AA was weak. However, the interaction between Al(3+) and PAA was strong and depended on the initial (COOH in PAA)/Al molar ratio (R(P)) of the solution. For the range of 1/R(P), the interaction between Al(3+) and PAA can be divided into three categories: (1) 1:1 Al-PAA-complex (an Al(3+) combines to a carboxyl group), (2) intermolecular Al-PAA-complex (an Al(3+) combines to more than 2 carboxyl groups of other Al-PAA-complexes) in addition to the 1:1 Al-PAA-complex and (3) precipitation of intermolecular complexes. In conclusion, R(P) is an important factor affecting the behavior of Al(3+) in acidic soil solution.
  19. The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative. LENUS (Irish Health Repository) Dowling, Adam H 2011-06-01 The aim was to investigate the influence of number average molecular weight and concentration of the poly(acrylic) acid (PAA) liquid constituent of a GI restorative on the compressive fracture strength (σ) and modulus (E).
  20. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio. Science.gov (United States) Takahashi, Toshinari; Ohara, Yusuke; Sueno, Kazuo 2017-06-01 Sake yeast produces a fruity flavor known as ginjo-ko-which is mainly attributable to ethyl caproate and isoamyl acetate-during fermentation in sake brewing. The production of these flavor components is inhibited by unsaturated fatty acids derived from the outer layer of rice as raw material. We isolated three mutants (hec2, hec3, and hec6) with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio from a cerulenin-resistant mutant derived from the hia1 strain, which shows enhanced isoamyl acetate productivity. The hec2 mutant had the homozygous FAS2 mutation Gly1250Ser, which is known to confer high ethyl caproate productivity. When the homozygous FAS2 mutation Gly1250Ser was introduced into strain hia1, ethyl caproate productivity was increased but neither this nor intracellular caproic acid content approached the levels observed in the hec2 mutant, indicating that a novel mutation was responsible for the high ethyl caproate productivity. We also found that the expression of EEB1 encoding acyl-coenzyme A:ethanol O-acyltransferase (AEATase) and enzymatic activity were increased in the hec2 mutant. These results suggest that the upregulation of EEB1 expression and AEATase activity may also have contributed to the enhancement of ethyl caproate synthesis from ethanol and caproyl-CoA. Our findings are useful for the brewing of sake with improved flavor due to high levels of isoamyl acetate and ethyl caproate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
  1. Preparation and Characteristics of Corn Straw-Co-AMPS-Co-AA Superabsorbent Hydrogel Wei-Min Cheng 2015-11-01 Full Text Available In this study, the corn straw after removing the lignin was grafted with 2-acrylamido-2-methylpropanesulfonic acid (AMPS to prepare sulfonated cellulose. The grafting copolymerization between the sulfonated cellulose and acrylic acid (AA was performed using potassium persulfate and N,N′-methylenebisacrylamide as the initiator and crosslinking agent, respectively, to prepare corn straw-co-AMPS-co-AA hydrogels. The structure and properties of the resulting hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and dynamic rheometry. The effects of initiator, crosslinker, monomer neutralization degree, and temperature on the swelling ratio of the hydrogels were studied. The water retention, salt resistance, and recyclability of the corn straw-co-AMPS-co-AA hydrogels were also investigated. The optimum water absorptivity of the corn straw hydrogels was obtained at a polymerization temperature of 50 °C with 1.2% crosslinker, 1:7 ratio of the pretreated corn straw and AA, 2% initiator, and 50% neutralized AA.
  2. Preparation of poly(acrylic acid)-chitosan hydrogels by gamma irradiation for metal ions sorption International Nuclear Information System (INIS) Tran Thu Hong; Le Hai; Nguyen Tan Man; Tran Thi Tam; Pham Thi Le Ha; Pham Thi Sam; Nguyen Duy Hang; Le Huu Tu; Le Van Toan 2013-01-01 Acid acrylic (AAc) was grafted onto crosslinked chitosan to make Chitosan-g-AAc copolymer with concentration of AAc from 0.5 to 15% by gamma irradiation. The optimal dose for grafting of 15% AAc onto chitosan was 5 kGy. Physical and chemical properties of irradiated samples such as SEM images, FTIR spectroscopy, TGA and swelling behavior at different pHs were evaluated. The grafting yield increased with the increase in dose, it reached 52% at 7 kGy irradiation dose. The application were grafted materials to adsorb metals ion from aqueous solutions was also investigated with both ungrafted and grafted chitosan beads under changing pH from 3 to 6. Grafted chitosan presented higher sorption capacity for most of metal ions than unmodified chitosan. (author)
  3. Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate Science.gov (United States) Khezri, Khezrollah; Ghasemi, Moosa; Fazli, Yousef 2018-05-01 Mesoporous diatomite particles were employed to prepare different poly(styrene-co-butyl acrylate)/diatomite nanocomposites. Diatomite nanoplatelets were used for in situ copolymerization of styrene and butyl acrylate by SR&NI ATRP to synthesize well-defined poly(styrene-co-butyl acrylate) nanocomposites. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite nanoplatelets. Evaluation of pore size distribution and morphological studies were also performed by SEM and TEM. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography respectively. Addition of 3 wt% pristine mesoporous diatomite nanoplatelets leads to increase of conversion from 73 to 89%. Molecular weight of poly(styrene-co-butyl acrylate) chains increases from 17,115 to 20,343 g·mol-1 by addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.14 to 1.37. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 35.26 to 39.61°C by adding 3 wt% of mesoporous diatomite nanoplatelets.
  4. Removal of Industrial Pollutants From Wastewater's By Graft Copolymers International Nuclear Information System (INIS) Hegazy El-Sayed, A.; El-Nagar Abdel-Wahab, M.; Senna Magdy, M.; Zahran Abdel-Hamid, H. 1999-01-01 Graft copolymers that obtained by radiation grafting of acrylic acid and acrylamide onto LDPE film were converted to N-hydroxy ethyl amide and hydroxamic acid derivatives respectively. The possible application for the different prepared chemical derivatives of LDPE graft copolymers in metal adsorption from solutions containing a single cation or simulated medium active waste has been investigated. The results showed that the adsorption of Cu(II) metal by different chemical derivatives was greatly affected by different factors such as graft yield, ph value, concentration of metal in the feed solution, immersion time and treatment temperature. The affinity of N-hydroxy ethyl amide derivative toward the different metals was found to be in the order of; Cu(II) >Pd(II) > Cd(II)> Co(II). However, for hydroxamic acid derivative , the affinity order was: Cd(II) > Cu(II) > Co(II). The ESR and IR analysis revealed that the metal ions are chelated through the lone pair of electrons on the -OH and -NH- groups forming a ring structure. The measured metal ion uptake from simulated medium active waste mixture by N-hydroxy ethyl amide derivative was found to follow the following order: Fe> U> Ni> Zr> Zn> Cr. On the other hand, the measured metal uptake by hydroxamic acid derivative was found to follow: Fe>U> Zr> Ca. It is concluded that the prepared grafted copolymers are of interest for metal chelation and could be applied in the field of waste treatment
  5. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities Energy Technology Data Exchange (ETDEWEB) Ni, Zhihui [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Wang, Zhihua [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Sun, Lei, E-mail: [email protected] [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Binjie [Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng 475004 (China); Zhao, Yanbao [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China) 2014-08-01 Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. - Highlights: • Dispersed Ag/PAA NPs with small size were synthesized. • Ag/PAA NPs exhibited excellent antimicrobial properties. • Interaction mechanism between Ag/PAA NPs and bacteria was verified.
  6. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities International Nuclear Information System (INIS) Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao 2014-01-01 Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. - Highlights: • Dispersed Ag/PAA NPs with small size were synthesized. • Ag/PAA NPs exhibited excellent antimicrobial properties. • Interaction mechanism between Ag/PAA NPs and bacteria was verified
  7. Long-term toughness of photopolymerizable (meth)acrylate networks in aqueous environments. Science.gov (United States) Smith, Kathryn E; Trusty, Phillip; Wan, Beatrice; Gall, Ken 2011-02-01 Photopolymerizable (meth)acrylate networks are potentially advantageous biomaterials due to their ability to be formed in situ, their fast synthesis rates and their tailorable material properties. The objective of this study was to evaluate how immersion time in phosphate-buffered saline (PBS) affects the toughness of photopolymerizable methyl acrylate (MA)-co-methyl methacrylate-co-poly(ethylene glycol) dimethacrylate networks containing various concentrations of MA. Stress-strain behavior was determined by performing tensile strain to failure testing after soaking in PBS for different periods (1 day up to 9 months). In tandem, differential scanning calorimetry and PBS content measurements were undertaken at each time point in order to determine whether time-dependent changes in toughness were related to changes in T(g) or PBS absorption. The effect of immersion time on network toughness was shown to be dependent upon composition in a manner related to the viscoelastic state of the polymer upon initial immersion in PBS. The results demonstrate that tough acrylate-based materials may not maintain their toughness after several months in PBS. In addition, decreasing the PBS content by changing the network hydrophobicity resulted in better toughness maintenance after 9 months. The results provide a possible means to toughen various amorphous acrylate-based implant materials that are being explored for load-bearing biomedical applications, beyond the systems considered in this work. Published by Elsevier Ltd.
  8. Acrylate Systemic Contact Dermatitis. Science.gov (United States) Sauder, Maxwell B; Pratt, Melanie D 2015-01-01 Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.
  9. Controlled Release of Indomethacin from Smart Starch-Based Hydrogels Prepared Acrylic Acid and b-Cyclodextrin as a Nanocarrier Hossein Ghasemzadeh Mohammadi 2017-01-01 Full Text Available Controlled release of drugs can reduce the undesired effects of drug level fluctuations, and diminish the side effects as well as improve the therapeutic outcome of the drugs. In recent year, the scope of the drug delivery systems has been greatly expanded by the development of various hydrogels. The present work has focused on the design of a pH sensitive drug delivery system (DDS based on starch, acrylic acid (AA and β-cyclodextrins for controlled delivery of indomethacin. The hydrogels were prepared via graft polymerization of acrylic acid (AA onto starch and β-cyclodextrins backbones by a free radical polymerization technique. Cyclodextrins are able to form water-soluble complexes with many lipophilic water-insoluble drugs. In aqueous solutions, the drug molecules located in the central cavity of the cyclodextrin are in a dynamic equilibrium with free drug molecules. The interaction of drug with the polymer was evidenced by FTIR spectroscopy and thermal gravimetric analysis (TGA. The morphology of the samples was examined by scanning electron microscopy (SEM. The results showed that the hydrogels have good porosity and provided high surface area for the loading and release of drugs. Drug release behavior was carried out at physiological conditions of phosphate buffer, pH 8. In basic pH (like the intestine medium the hydrogels released the indomethacin, but in acidic pH (like the stomach medium there was no tendency to drug release. By increasing the amount of cyclodextrin, the rate of drug loading and release increased due to the dynamic equilibrium and interaction between the loaded drug and the cyclodextrin. This study has demonstrated that the hydrogel matrices are potentially suitable for controlled-release systems.
  10. (meth)acrylates on in situ visible light polymerization of ... Indian Academy of Sciences (India) 60 ... faster to be cured using a visible light source with a Tungsten-Halogen lamp ... ranging from 350 to 1100 nm, which even covers some UV and near IR region. .... incorporation of the acid-containing and/or acrylate-containing monomer led to.
  11. Removal of some basic dyes by poly (Vinyl Alcohol/ acrylic acid)Hydrogel International Nuclear Information System (INIS) Hegazy, S.A.; Abdel-AAl, S.E.; Abdel-Rehim, H.A.; Khalifa, N.A.; El-Hosseiny, E.M. 2000-01-01 A study has made on the preparation and properties of poly (vinyl alcohol/ acrylic acid) hydrogel for the purpose of removal of cationic dyes from aqueous solutions. The effect of dose and monomer concentration on the uptake property of the hydrogel toward dye was studied. The uptake of basic methylene blue-9 dye with PVA/AAc was studied by the batch adsorption technique. The effect of pH on the dye uptake was demonstrated to find out that the suitable pH for maximum uptake occurred at pH 5. It was observed that as the concentration of dye is increased the dye uptake decreased. Furthermore, the uptake of dye by hydrogels increased as the temperature was elevated. The recovery of dye adsorbed is possible by treating the hydrogel with 5% HCl. The results obtained suggested this hydrogel possessed good removal properties towards basic methylene blue-9 dye, and this suggests that such hydrogels could be acceptable for practical uses
  12. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells International Nuclear Information System (INIS) Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing 2007-01-01 The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)
  13. Synthesis and characterization of tough foldable and transparent poly(styrene-co-butyl acrylate/nanoporous cellulose gel (NCG nanocomposites
  14. S. Borah 2017-09-01 Full Text Available Poly (styrene-co-butyl acrylate/nanoporous cellulose gel nanocomposites [P (St/BA/NCG] were synthesized by in-situ polymerization of styrene/butyl acrylate (St/BA monomer mixtures in nanoporous regenerated cellulose gels. The three-dimensional nanoporous cellulose gels (NCGs were fabricated via dissolution and coagulation of cellulose from aqueous sodium hydroxide (NaOH/urea solution. The NCG contents in nanocomposites were controlled between 16 and 44% v/v by changing water content of starting hydrogels via compression dewatering. Scanning electron microscopy (SEM analysis showed that the interconnected nanofibrillar network structure of NCGs was preserved well in the nanocomposites after insitu polymerization. The resulting nanocomposites exhibited excellent transparency (up to 82% in the visible region and high mechanical strength, with a tensile strength of up to 56.0 MPa, Young’s modulus of up to 2195 MPa and elongation at break up to 80.9%. Dynamic mechanical analysis (DMA showed a remarkable improvement (by over 3 orders of magnitude in tensile storage modulus above glass transition temperature of the copolymer. The nanocomposites also showed significant improvements in thermal stability as well as water resistance over NCG.
  15. Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water. Science.gov (United States) Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki 2012-09-01 Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.
  16. Radiation-curing of acrylate composites including carbon fibres: A customized surface modification for improving mechanical performances International Nuclear Information System (INIS) Martin, Arnaud; Pietras-Ozga, Dorota; Ponsaud, Philippe; Kowandy, Christelle; Barczak, Mariusz; Defoort, Brigitte; Coqueret, Xavier 2014-01-01 The lower transverse mechanical properties of radiation-cured acrylate-based composites reinforced with carbon-fibre with respect to the thermosettable analogues was investigated from the viewpoint of chemical interactions at the interface between the matrix and the carbon material. XPS analysis of representative commercial carbon fibres revealed the presence of a significant amount of chemical functions potentially exerting an adverse effect on the initiation and propagation of the free radical polymerization initiated under high energy radiation. The EB-induced polymerization of n-butyl acrylate as a simple model monomer was conducted in the presence of various aromatic additives exhibiting a strong inhibiting effect, whereas thiols efficiently sensitize the initiation mechanism and undergo transfer reactions. A method based on the surface modification of sized fibres by thiomalic acid is proposed for overcoming the localized inhibition phenomenon and for improving the mechanical properties of the resulting acrylate-based composites. - Highlights: • Surface functions of C-fibres are analyzed for their effect on radical reaction. • Irradiation of nBu-acrylate in presence of aromatic additives reveals inhibition. • Thiol groups sensitize the radiation-initiated polymerization of nBu-acrylate. • Modification of C-fibres with thiomalic acid enhances composite properties
  17. NOVEL SUPERABSORBENT HYDROGEL COMPOSITE BASED ON POLY(ACRYLAMIDE-CO-ACRYLATE/NONTRONITE: CHARACTERIZATION AND SWELLING PERFORMANCE Renan C. F. Leitão 2015-03-01 Full Text Available A novel superabsorbent hydrogel (SH composite based on a poly(acrylamide-co-acrylate matrix filled with nontronite (NONT, a Fe(III-rich member of the smectite group of clay minerals, is described in this manuscript. A variety of techniques, including FTIR, XRD, TGA, and SEM/EDX, were utilized to characterize this original composite. Experimental data confirmed the SH composite formation and suggested NONT was completely dispersed in the polymeric matrix. Additionally, NONT improved the water uptake capacity of the final material, which exhibited fast absorption, low sensitivity to the presence of salt, high water retention and a pH sensitive properties. These preliminary data showed that the original SH composite prepared here possesses highly attractive properties for applications in areas such as the agriculture field, particularly as a soil conditioner.
  18. Effect of gallic and protocatechuic acids on the metabolism of ethyl carbamate in Chinese yellow rice wine brewing. Science.gov (United States) Zhou, Wanyi; Fang, Ruosi; Chen, Qihe 2017-10-15 It was studied that gallic and protocatechuic acids played important roles in ethyl carbamate (EC) forming. Gallic and protocatechuic acids can reduce the arginine consumption through inhibiting the arginine deiminase enzyme. Therefore, they are generally added to regulate EC catabolism in the course of yellow rice wine leavening at the third day. In this work, gallic and protocatechuic acids made little influence on the growth of Saccharomyces cerevisiae. Besides, the addition of 200mg/L gallic or protocatechuic acid could prevent the transformation from urea/citrulline to EC. Gallic acid showed better inhibiting effect that the content of EC could be reduced by 91.9% at most. Furthermore, the production of amino acids and volatile flavor compounds are not markedly affected by phenolic compounds. The discoveries reveal that EC can be reduced by supplying gallic acid or protocatechuic acid while yellow rice wine leavening. Copyright © 2017 Elsevier Ltd. All rights reserved.
  19. Study of morphology and mechanical properties of hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxy ethylvinylether) International Nuclear Information System (INIS) Bitekenova, A.; Dzhusupbekova, A.; Khutoryanskij, V.; Nurkeeva, Z. 2003-01-01 The hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxy ethylvinylether) were obtained from blend of the corresponding monomers. Radiation crosslinking of composite materials are realize by γ-irradiation method and the gelation doses were calculated. It was shown that mechanical properties of films depend on composition (content of notion component) and conditions of crosslinking. The morphology of polymeric films was investigated by scanning electron microscopy
  20. SYNTHESIS OF ENANTIOMERICALLY PURE (R)-2-SULFANYLPROPANOIC AND (S)-2-SULFANYLPROPANOIC ACIDS (THIOLACTIC ACID) FROM ETHYL (S)-LACTATE USING PIG-LIVER ESTERASE NARCIS (Netherlands) HOF, RP; KELLOGG, RM 1995-01-01 The methanesulfonates of optically pure ethyl (S)-lactate or ethyl (R)-2-chloropropanoate 5, obtained with inversion of configuration from ethyl (S)-lactate on treatment with SOCl2, can be substituted by caesium thiolates with inversion of configuration to yield (R) and (S) ethyl
  21. Study on radiation grafting of acrylic acid onto fluorine-containing polymers. II. Properties of membrane obtained by preirradiation grafting onto poly(tetrafluoroethylene) International Nuclear Information System (INIS) Hegazy, E.S.A.; Ishigaki, I.; Rabie, A.; Dessouki, A.M.; Okamoto, J. 1981-01-01 Some properties of the membranes obtained by the preirradiation grafting of acrylic acid onto poly(tetrafluoroethylene) (PTFE) film have been studied. The dimensional change by grafting and swelling, water uptake, electric conductivity, and mechanical properties of the grafted PTFE films were measured and were found to increase as the grafting proceeds. These properties were found to be dependent mainly on the degree of grafting regardless of grafting conditions except higher monomer concentration (80 wt %). The electric conductivity and mechanical properties of the membranes at 80 wt % monomer concentration is lower than those at a lower monomer concentration. The results suggest that the membranes obtained at 80-wt % acrylic acid solution have a somewhat heterogeneous distribution of electrolyte groups as compared with those prepared at a monomer concentration less than 60 wt %. X-ray microscopy of the grafted films revealed that the grafting begins at the part close to the film surface and proceeds into the center with progressive diffusion of monomer to give finally the homogeneous distribution of electrolyte groups. The membranes show good electrochemical and mechanical properties which make them acceptable for the practical uses as cation exchange membrane
  • [Acrylic resin removable partial dentures]. Science.gov (United States) de Baat, C; Witter, D J; Creugers, N H J 2011-01-01 An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.
  • Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models. Science.gov (United States) Zhang, Yong-Tai; Li, Zhe; Zhang, Kai; Zhang, Hong-Yu; He, Ze-Hui; Xia, Qing; Zhao, Ji-Hui; Feng, Nian-Ping 2017-08-07 The aim of this study was to improve the analgesic effect of evodiamine and rutaecarpine, using a microemulsion-based hydrogel (ME-Gel) as the transdermal co-delivery vehicle, and to assess hyaluronic acid as a hydrogel matrix for microemulsion entrapment. A microemulsion was formulated with ethyl oleate as the oil core to improve the solubility of the alkaloids and was loaded into a hyaluronic acid-structured hydrogel. Permeation-enhancing effects of the microemulsion enabled evodiamine and rutaecarpine in ME-Gel to achieve 2.60- and 2.59-fold higher transdermal fluxes compared with hydrogel control (pmicroemulsion exhibited good skin biocompatibility, whereas effective ME-Gel co-delivery of evodiamine and rutaecarpine through the skin enhanced the analgesic effect in mouse pain models compared with hydrogel. Notably, evodiamine and rutaecarpine administered using ME-Gel effectively down-regulated serum levels of prostaglandin E 2 , interleukin 6, and tumor necrosis factor α in formaldehyde-induced mouse pain models, possibly reflecting the improved transdermal permeability of ME-Gel co-delivered evodiamine and rutaecarpine, particularly with hyaluronic acid as the hydrogel matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
  • Highly transparent poly(2-ethyl-2-oxazoline)-TiO2 nanocomposite coatings for the conservation of matte painted artworks OpenAIRE Colombo, A.; Gherardi, Francesca; Goidanich, S.; Delaney, J. K.; de la Rie, E. R.; Ubaldi, M. C.; Toniolo, L.; Simonutti, R. 2015-01-01 A nanocomposite coating based on TiO2 nanoparticles and poly(2-ethyl-2-oxazoline) is used as consolidant of matte painted surfaces (temperas, watercolors, modern paintings). The aim of this work is to provide advances in the conservation of these works of art, while preserving their optical appearance, in terms of colour and gloss. Fiber Optic Reflectance Spectroscopy (FORS) measurements of a painting-model (an acrylic black monochrome) treated with the nanocomposite coatings revealed that it...
  • Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels Energy Technology Data Exchange (ETDEWEB) Sakthivel, M., E-mail: [email protected] [Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamilnadu (India); Department of Chemistry, Ganadipathy Tulsi' s Jain Engineering College, Kaniyambadi, Vellore 632 102, Tamilnadu (India); Franklin, D.S., E-mail: [email protected] [Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam 632509, Tamilnadu (India); Sudarsan, S., E-mail: [email protected] [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Chitra, G., E-mail: [email protected] [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Guhanathan, S., E-mail: [email protected] [PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore 632 002, Tamilnadu (India) 2017-06-01 The pH-sensitive gold nano hydrogel based on itaconic acid, acrylic acid and triethylene glycol (GIAT) has been prepared by free radical polymerization viz. organic solventless approach with different monomer ratios. The nature of bonding and structural identification of GIAT hydrogels were characterized by FT-IR spectroscopy. The surface morphology of gold gel was examined using scanning electron microscopy (SEM). In addition, transmission electron microscopy (TEM) was used to identify the size of gold nano particles. The in vitro biocompatibility of GIAT hydrogel has been evaluated in 3T3 fibroblast cell lines. The obtained results show that gold nano particle incorporated hydrogel possess ~ 99% of cell proliferation. Followed by, the impact of gold nano particles on swelling, surface morphology was studied. The consecutive preparation of hydrogel, effect of different pH conditions, and stoichiometry of monomeric units have also been discussed. The degree of swelling was measured in carbonate buffer solutions for 24 h period with varying pH such as 1.2, 6.0, 7.4 and 10.0. The obtained results showed that the stoichiometry of itaconic acid and gold nano particles plays an essential role in modifying the nature of GIAT polymeric hydrogels. In conclusion, promising Au-nano incorporated pH-sensitive bio polymeric hydrogels were prepared and characterized. The unique properties of these Au-nano hydrogel make them attractive use in biomedical applications. - Highlights: • Itaconic acid based hydrogels were developed viz. greener organic solvent less approach. • The enhanced equilibrium swelling at acidic and basic medium was observed for nano-Au-incorporated nano composite hydrogels. • The prepared GIAT hydrogel showed ~ 99% of cell proliferation. • This kind of pH-sensitive polymeric hydrogels may be useful for controlled drug delivery system.
  • Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels International Nuclear Information System (INIS) Sakthivel, M.; Franklin, D.S.; Sudarsan, S.; Chitra, G.; Guhanathan, S. 2017-01-01 The pH-sensitive gold nano hydrogel based on itaconic acid, acrylic acid and triethylene glycol (GIAT) has been prepared by free radical polymerization viz. organic solventless approach with different monomer ratios. The nature of bonding and structural identification of GIAT hydrogels were characterized by FT-IR spectroscopy. The surface morphology of gold gel was examined using scanning electron microscopy (SEM). In addition, transmission electron microscopy (TEM) was used to identify the size of gold nano particles. The in vitro biocompatibility of GIAT hydrogel has been evaluated in 3T3 fibroblast cell lines. The obtained results show that gold nano particle incorporated hydrogel possess ~ 99% of cell proliferation. Followed by, the impact of gold nano particles on swelling, surface morphology was studied. The consecutive preparation of hydrogel, effect of different pH conditions, and stoichiometry of monomeric units have also been discussed. The degree of swelling was measured in carbonate buffer solutions for 24 h period with varying pH such as 1.2, 6.0, 7.4 and 10.0. The obtained results showed that the stoichiometry of itaconic acid and gold nano particles plays an essential role in modifying the nature of GIAT polymeric hydrogels. In conclusion, promising Au-nano incorporated pH-sensitive bio polymeric hydrogels were prepared and characterized. The unique properties of these Au-nano hydrogel make them attractive use in biomedical applications. - Highlights: • Itaconic acid based hydrogels were developed viz. greener organic solvent less approach. • The enhanced equilibrium swelling at acidic and basic medium was observed for nano-Au-incorporated nano composite hydrogels. • The prepared GIAT hydrogel showed ~ 99% of cell proliferation. • This kind of pH-sensitive polymeric hydrogels may be useful for controlled drug delivery system.
  • Chemical Fixation of CO{sub 2} to Acrylates Using Low-Valent Molybdenum Sources Energy Technology Data Exchange (ETDEWEB) Bernskoetter, Wesley 2013-09-30 The kinetic, mechanistic, and reactivity experiments to access the viability and possible reaction design of coupling of carbon dioxide and ethylene at a zerovalent molybdenum for the production of acrylates are described. A general model of the reaction mechanism has been outlined, including assessment of the rate limiting step in the reaction. Kinetic and computational data have valuated the influence of a range of tridentate ligand platforms on the rate of coupling. An in situ reduction and acrylate formation activity screen protocol has also been developed to aid in the technology development of this process. Portions of descriptions of the research products presented here have also been adapted with permission from journal publications.
  • Technology and the use of acrylics for provisional dentine protection. Science.gov (United States) Kapusevska, Biljana; Dereban, Nikola; Popovska, Mirjana; Nikolovska, Julijana; Radojkova Nikolovska, Vеrа; Zabokova Bilbilova, Efka; Mijoska, Aneta 2013-01-01 Acrylics are compounds polymerized from monomers of acrylic, metacrylic acid or acrylonitrates. The purpose of this paper is to present the technology and use of acrylics for provisional dentine protection in the practice of dental prosthodontics. For this reason, we followed 120 clinical cases from the everyday clinical practice, divided into 4 groups of 30 patients who needed prosthetic reconstruction. The first group included cases in which we applied celluloid crowns for dentine protection, for the second group we used acrylic teeth from a set of teeth for complete dentures; in the third and fourth groups the fabrication was done with the system of an impression matrix and the acrylic resin block technique respectively. In all the examined patients, the gingival index by Silness and Loe and the vitality of the dental pulp were verified clinically, after preparation and 8 days from the placement of the provisional crown. The value for dental sensitivity measured after preparation was 2.59, and 8 days after the placement of the provisional crown it bwas 3.1. From these results we can conclude that after the 8th day from the placement of the provisional crown, there was an adaptation period, characterized by a decrease in the painful sensations. The value of the Silness and Loe gingival index measured after the preparation was 1.34, and 8 days from the placement of the provisional crown was 0.94. The results inclined us to the fact that the provisional acrylic crowns facilitated the reparation of the periodontal tissue.
  • pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Science.gov (United States) Shalviri, Alireza; Raval, Gaurav; Prasad, Preethy; Chan, Carol; Liu, Qiang; Heerklotz, Heiko; Rauth, Andrew Michael; Wu, Xiao Yu 2012-11-01 This work investigated the capability of a new nanoparticulate system, based on terpolymer of starch, polymethacrylic acid and polysorbate 80, to load and release doxorubicin (Dox) as a function of pH and to evaluate the anticancer activity of Dox-loaded nanoparticles (Dox-NPs) to overcome multidrug resistance (MDR) in human breast cancer cells in vitro. The Dox-NPs were characterized by Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The cellular uptake and cytotoxicity of the Dox-loaded nanoparticles were investigated using fluorescence microscopy, flow cytometry, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. The nanoparticles were able to load up to 49.7±0.3% of Dox with a high loading efficiency of 99.9±0.1%, while maintaining good colloidal stability. The nanoparticles released Dox at a higher rate at acidic pH attributable to weaker Dox-polymer molecular interactions evidenced by ITC. The Dox-NPs were taken up by the cancer cells in vitro and significantly enhanced the cytotoxicity of Dox against human MDR1 cells with up to a 20-fold decrease in the IC50 values. The results suggest that the new terpolymeric nanoparticles are a promising vehicle for the controlled delivery of Dox for treatment of drug resistant breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.
  • Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery Jinfeng Xing 2009-10-01 Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine
  • Synthesis and properties of hydroxy acrylic resin with high solid content Science.gov (United States) Yu, Zhen; Hu, Mingguang; Cui, Han; Xiao, Jijun 2017-10-01 Manufacturers of automotive repair finishes are tending to reduce more and more the level of volatile organic compounds in their paints in order to comply with increasingly strict environmental legislation. A high solid hydroxy acrylic resin was synthesised using CARDURA E10 and a type of hydroxyacrylic acid resin, its' acid value, hydroxylvalue, viscosity, structure, morphology was measured and film-forming properties after curing were characterised. The results show that the addition of CARDURA E10 in the copolymer composition significantly reduced the viscosity of the polymer system, improved the solid content of the resin and the physical properties of the coating. The hydroxyl acrylate resin with solid content of 90% and excellent comprehensive performance were successfully prepared by controlling the initiator dosage, polymerization temperature and monomer ratio.
  • Grafting of acrylic acid on etched latent tracks induced by swift heavy ions on polypropylene films International Nuclear Information System (INIS) Mazzei, R.; Fernandez, A.; Garcia Bermudez, G.; Torres, A.; Gutierrez, M.C.; Magni, M.; Celma, G.; Tadey, D. 2008-01-01 In order to continue with a systematic study that include different polymers and monomers, the residual active sites produced by heavy ion beams, that remain after the etching process, were used to start the grafting process. To produce tracks, foils of polypropylene (PP) were irradiated with 208 Pb of 25.62 MeV/n. Then, these were etched and grafted with acrylic acid (AA) monomers. Experimental curves of grafting yield as a function of grafting time with the etching time as a parameter were measured. Also, the grating yield as a function of the fluence and etching time was obtained. In addition, the permeation of solutions, with different pH, through PP grafted foils was measured

Synthesis and characterization of starch-g-poly(vinyl acetate-co-butyl acrylate) bio-based adhesive for wood application.

Science.gov (United States)

Zia-Ud-Din; Chen, Lei; Ullah, Ikram; Wang, Peng Kai; Javaid, Allah Bakhsh; Hu, Chun; Zhang, Mengchao; Ahamd, Ishtiaq; Xiong, Hanguo; Wang, Zhenjiong

Acrylic acid copolymer là gì?

Acrylic Acid Copolymer còn có tên gọi khác là Ethylene, Glycerin Acrylate. Đây là một loại Polymer và là nguyên liệu chính để tạo thành Hydrogel (tên thương mại là Lubrajel) có tác dụng dưỡng ẩm tương tự như hoạt chất Glycerin.