Lỗi syntax error in date in query expression trong c năm 2024

There are two commands available that allow you to return data from a function:

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 and

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1.

43.6.1.1.

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0

RETURN expression;

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 with an expression terminates the function and returns the value of

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

4 to the caller. This form is used for PL/pgSQL functions that do not return a set.

In a function that returns a scalar type, the expression's result will automatically be cast into the function's return type as described for assignments. But to return a composite (row) value, you must write an expression delivering exactly the requested column set. This may require use of explicit casting.

If you declared the function with output parameters, write just

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 with no expression. The current values of the output parameter variables will be returned.

If you declared the function to return

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

6, a

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 statement can be used to exit the function early; but do not write an expression following

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0.

The return value of a function cannot be left undefined. If control reaches the end of the top-level block of the function without hitting a

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 statement, a run-time error will occur. This restriction does not apply to functions with output parameters and functions returning

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

6, however. In those cases a

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 statement is automatically executed if the top-level block finishes.

Some examples:

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

43.6.1.2.

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1 and

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

When a PL/pgSQL function is declared to return

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

4, the procedure to follow is slightly different. In that case, the individual items to return are specified by a sequence of

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1 or

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3 commands, and then a final

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 command with no argument is used to indicate that the function has finished executing.

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1 can be used with both scalar and composite data types; with a composite result type, an entire “table” of results will be returned.

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3 appends the results of executing a query to the function's result set.

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1 and

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3 can be freely intermixed in a single set-returning function, in which case their results will be concatenated.

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1 and

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3 do not actually return from the function — they simply append zero or more rows to the function's result set. Execution then continues with the next statement in the PL/pgSQL function. As successive

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1 or

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3 commands are executed, the result set is built up. A final

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0, which should have no argument, causes control to exit the function (or you can just let control reach the end of the function).

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3 has a variant

IF boolean-expression THEN_`statements`_ END IF;

8, which specifies the query to be executed dynamically. Parameter expressions can be inserted into the computed query string via

IF boolean-expression THEN_`statements`_ END IF;

9, in just the same way as in the

IF v_user_id <> 0 THENUPDATE users SET email = v_email WHERE user_id = v_user_id; END IF;

0 command.

If you declared the function with output parameters, write just

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1 with no expression. On each execution, the current values of the output parameter variable(s) will be saved for eventual return as a row of the result. Note that you must declare the function as returning

IF v_user_id <> 0 THENUPDATE users SET email = v_email WHERE user_id = v_user_id; END IF;

2 when there are multiple output parameters, or

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

4 when there is just one output parameter of type

IF v_user_id <> 0 THENUPDATE users SET email = v_email WHERE user_id = v_user_id; END IF;

4, in order to create a set-returning function with output parameters.

Here is an example of a function using

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

Here is an example of a function using

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3:

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

Note

The current implementation of

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

1 and

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

3 stores the entire result set before returning from the function, as discussed above. That means that if a PL/pgSQL function produces a very large result set, performance might be poor: data will be written to disk to avoid memory exhaustion, but the function itself will not return until the entire result set has been generated. A future version of PL/pgSQL might allow users to define set-returning functions that do not have this limitation. Currently, the point at which data begins being written to disk is controlled by the configuration variable. Administrators who have sufficient memory to store larger result sets in memory should consider increasing this parameter.

43.6.2. Returning from a Procedure

A procedure does not have a return value. A procedure can therefore end without a

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 statement. If you wish to use a

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 statement to exit the code early, write just

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 with no expression.

If the procedure has output parameters, the final values of the output parameter variables will be returned to the caller.

43.6.3. Calling a Procedure

A PL/pgSQL function, procedure, or

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

2 block can call a procedure using

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

3. Output parameters are handled differently from the way that

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

3 works in plain SQL. Each

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

5 or

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

6 parameter of the procedure must correspond to a variable in the

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

3 statement, and whatever the procedure returns is assigned back to that variable after it returns. For example:

CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGINx := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;

The variable corresponding to an output parameter can be a simple variable or a field of a composite-type variable. Currently, it cannot be an element of an array.

43.6.4. Conditionals

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

8 and

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

9 statements let you execute alternative commands based on certain conditions. PL/pgSQL has three forms of

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

8:

  • IF parentid IS NULL OR parentid = '' THEN RETURN fullname; ELSE RETURN hp_true_filename(parentid) || '/' || fullname; END IF; 1
  • IF parentid IS NULL OR parentid = '' THEN RETURN fullname; ELSE RETURN hp_true_filename(parentid) || '/' || fullname; END IF; 2
  • IF parentid IS NULL OR parentid = '' THEN RETURN fullname; ELSE RETURN hp_true_filename(parentid) || '/' || fullname; END IF; 3

and two forms of

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

9:

  • IF parentid IS NULL OR parentid = '' THEN RETURN fullname; ELSE RETURN hp_true_filename(parentid) || '/' || fullname; END IF; 5
  • IF parentid IS NULL OR parentid = '' THEN RETURN fullname; ELSE RETURN hp_true_filename(parentid) || '/' || fullname; END IF; 6

43.6.4.1.

IF parentid IS NULL OR parentid = '' THENRETURN fullname; ELSERETURN hp_true_filename(parentid) || '/' || fullname; END IF;

7

IF boolean-expression THEN_`statements`_ END IF;

IF parentid IS NULL OR parentid = '' THENRETURN fullname; ELSERETURN hp_true_filename(parentid) || '/' || fullname; END IF;

7 statements are the simplest form of

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

8. The statements between

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

00 and

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

01 will be executed if the condition is true. Otherwise, they are skipped.

Example:

IF v_user_id <> 0 THENUPDATE users SET email = v_email WHERE user_id = v_user_id; END IF;

43.6.4.2.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

02

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

02 statements add to

IF parentid IS NULL OR parentid = '' THENRETURN fullname; ELSERETURN hp_true_filename(parentid) || '/' || fullname; END IF;

7 by letting you specify an alternative set of statements that should be executed if the condition is not true. (Note this includes the case where the condition evaluates to NULL.)

Examples:

IF parentid IS NULL OR parentid = '' THENRETURN fullname; ELSERETURN hp_true_filename(parentid) || '/' || fullname; END IF;

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

0

43.6.4.3.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

05

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

1

Sometimes there are more than just two alternatives.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

05 provides a convenient method of checking several alternatives in turn. The

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

8 conditions are tested successively until the first one that is true is found. Then the associated statement(s) are executed, after which control passes to the next statement after

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

01. (Any subsequent

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

8 conditions are not tested.) If none of the

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

8 conditions is true, then the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

11 block (if any) is executed.

Here is an example:

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

2

The key word

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

12 can also be spelled

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

13.

An alternative way of accomplishing the same task is to nest

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

02 statements, as in the following example:

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

3

However, this method requires writing a matching

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

01 for each

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

8, so it is much more cumbersome than using

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

12 when there are many alternatives.

43.6.4.4. Simple

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

9

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

4

The simple form of

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

9 provides conditional execution based on equality of operands. The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

20 is evaluated (once) and successively compared to each

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

4 in the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

22 clauses. If a match is found, then the corresponding

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

23 are executed, and then control passes to the next statement after

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

24. (Subsequent

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

22 expressions are not evaluated.) If no match is found, the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

11

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

23 are executed; but if

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

11 is not present, then a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

29 exception is raised.

Here is a simple example:

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

5

43.6.4.5. Searched

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

9

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

6

The searched form of

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

9 provides conditional execution based on truth of Boolean expressions. Each

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

22 clause's

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

33 is evaluated in turn, until one is found that yields

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

34. Then the corresponding

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

23 are executed, and then control passes to the next statement after

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

24. (Subsequent

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

22 expressions are not evaluated.) If no true result is found, the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

11

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

23 are executed; but if

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

11 is not present, then a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

29 exception is raised.

Here is an example:

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

7

This form of

IF boolean-expression THEN_`statements`_ ELSE_`statements`_ END IF;

9 is entirely equivalent to

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

05, except for the rule that reaching an omitted

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

11 clause results in an error rather than doing nothing.

43.6.5. Simple Loops

With the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

45,

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46,

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

47,

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

48,

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49, and

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

50 statements, you can arrange for your PL/pgSQL function to repeat a series of commands.

43.6.5.1.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

45

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

8

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

45 defines an unconditional loop that is repeated indefinitely until terminated by an

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46 or

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 statement. The optional

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

55 can be used by

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46 and

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

47 statements within nested loops to specify which loop those statements refer to.

43.6.5.2.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

9

If no

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

55 is given, the innermost loop is terminated and the statement following

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

60 is executed next. If

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

55 is given, it must be the label of the current or some outer level of nested loop or block. Then the named loop or block is terminated and control continues with the statement after the loop's/block's corresponding

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

62.

If

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

22 is specified, the loop exit occurs only if

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

33 is true. Otherwise, control passes to the statement after

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46 can be used with all types of loops; it is not limited to use with unconditional loops.

When used with a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

67 block,

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46 passes control to the next statement after the end of the block. Note that a label must be used for this purpose; an unlabeled

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46 is never considered to match a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

67 block. (This is a change from pre-8.4 releases of PostgreSQL, which would allow an unlabeled

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46 to match a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

67 block.)

Examples:

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

0

43.6.5.3.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

47

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

1

If no

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

55 is given, the next iteration of the innermost loop is begun. That is, all statements remaining in the loop body are skipped, and control returns to the loop control expression (if any) to determine whether another loop iteration is needed. If

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

55 is present, it specifies the label of the loop whose execution will be continued.

If

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

22 is specified, the next iteration of the loop is begun only if

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

33 is true. Otherwise, control passes to the statement after

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

47.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

47 can be used with all types of loops; it is not limited to use with unconditional loops.

Examples:

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

2

43.6.5.4.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

48

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

3

The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

48 statement repeats a sequence of statements so long as the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

33 evaluates to true. The expression is checked just before each entry to the loop body.

For example:

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

4

43.6.5.5.

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49 (Integer Variant)

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

5

This form of

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49 creates a loop that iterates over a range of integer values. The variable

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

85 is automatically defined as type

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

86 and exists only inside the loop (any existing definition of the variable name is ignored within the loop). The two expressions giving the lower and upper bound of the range are evaluated once when entering the loop. If the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

87 clause isn't specified the iteration step is 1, otherwise it's the value specified in the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

87 clause, which again is evaluated once on loop entry. If

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

89 is specified then the step value is subtracted, rather than added, after each iteration.

Some examples of integer

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49 loops:

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

6

If the lower bound is greater than the upper bound (or less than, in the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

89 case), the loop body is not executed at all. No error is raised.

If a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

55 is attached to the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49 loop then the integer loop variable can be referenced with a qualified name, using that

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

55.

43.6.6. Looping through Query Results

Using a different type of

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49 loop, you can iterate through the results of a query and manipulate that data accordingly. The syntax is:

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

7

The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

96 is a record variable, row variable, or comma-separated list of scalar variables. The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

96 is successively assigned each row resulting from the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

98 and the loop body is executed for each row. Here is an example:

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

8

If the loop is terminated by an

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

46 statement, the last assigned row value is still accessible after the loop.

The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

98 used in this type of

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49 statement can be any SQL command that returns rows to the caller:

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

02 is the most common case, but you can also use

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

03,

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

04, or

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

05 with a

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

06 clause. Some utility commands such as

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

07 will work too.

PL/pgSQL variables are replaced by query parameters, and the query plan is cached for possible re-use, as discussed in detail in and .

The

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

08 statement is another way to iterate over rows:

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

9

This is like the previous form, except that the source query is specified as a string expression, which is evaluated and replanned on each entry to the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49 loop. This allows the programmer to choose the speed of a preplanned query or the flexibility of a dynamic query, just as with a plain

IF v_user_id <> 0 THENUPDATE users SET email = v_email WHERE user_id = v_user_id; END IF;

0 statement. As with

IF v_user_id <> 0 THENUPDATE users SET email = v_email WHERE user_id = v_user_id; END IF;

0, parameter values can be inserted into the dynamic command via

IF boolean-expression THEN_`statements`_ END IF;

9.

Another way to specify the query whose results should be iterated through is to declare it as a cursor. This is described in .

43.6.7. Looping through Arrays

The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

50 loop is much like a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

49 loop, but instead of iterating through the rows returned by an SQL query, it iterates through the elements of an array value. (In general,

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

50 is meant for looping through components of a composite-valued expression; variants for looping through composites besides arrays may be added in future.) The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

50 statement to loop over an array is:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

0

Without

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

17, or if

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

18 is specified, the loop iterates through individual elements of the array produced by evaluating the

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

4. The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

96 variable is assigned each element value in sequence, and the loop body is executed for each element. Here is an example of looping through the elements of an integer array:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

1

The elements are visited in storage order, regardless of the number of array dimensions. Although the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

96 is usually just a single variable, it can be a list of variables when looping through an array of composite values (records). In that case, for each array element, the variables are assigned from successive columns of the composite value.

With a positive

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

17 value,

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

50 iterates through slices of the array rather than single elements. The

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

17 value must be an integer constant not larger than the number of dimensions of the array. The

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

96 variable must be an array, and it receives successive slices of the array value, where each slice is of the number of dimensions specified by

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

17. Here is an example of iterating through one-dimensional slices:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

2

43.6.8. Trapping Errors

By default, any error occurring in a PL/pgSQL function aborts execution of the function and the surrounding transaction. You can trap errors and recover from them by using a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

67 block with an

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 clause. The syntax is an extension of the normal syntax for a

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

67 block:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

3

If no error occurs, this form of block simply executes all the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

23, and then control passes to the next statement after

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

62. But if an error occurs within the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

23, further processing of the

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

23 is abandoned, and control passes to the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 list. The list is searched for the first

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

35 matching the error that occurred. If a match is found, the corresponding

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

36 are executed, and then control passes to the next statement after

functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types

62. If no match is found, the error propagates out as though the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 clause were not there at all: the error can be caught by an enclosing block with

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28, or if there is none it aborts processing of the function.

The

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

35 names can be any of those shown in Appendix A. A category name matches any error within its category. The special condition name

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

41 matches every error type except

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

42 and

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

43. (It is possible, but often unwise, to trap those two error types by name.) Condition names are not case-sensitive. Also, an error condition can be specified by

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

44 code; for example these are equivalent:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

4

If a new error occurs within the selected

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

36, it cannot be caught by this

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 clause, but is propagated out. A surrounding

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 clause could catch it.

When an error is caught by an

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 clause, the local variables of the PL/pgSQL function remain as they were when the error occurred, but all changes to persistent database state within the block are rolled back. As an example, consider this fragment:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

5

When control reaches the assignment to

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

49, it will fail with a

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

50 error. This will be caught by the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 clause. The value returned in the

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGINRETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; Returns available flights or raises exception if there are no available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);

0 statement will be the incremented value of

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

53, but the effects of the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

04 command will have been rolled back. The

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

03 command preceding the block is not rolled back, however, so the end result is that the database contains

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

56 not

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

57.

Tip

A block containing an

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 clause is significantly more expensive to enter and exit than a block without one. Therefore, don't use

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

28 without need.

Example 43.2. Exceptions with

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

04/

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

03

This example uses exception handling to perform either

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

04 or

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

03, as appropriate. It is recommended that applications use

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

03 with

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

65 rather than actually using this pattern. This example serves primarily to illustrate use of PL/pgSQL control flow structures:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

6

This coding assumes the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

66 error is caused by the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

03, and not by, say, an

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

03 in a trigger function on the table. It might also misbehave if there is more than one unique index on the table, since it will retry the operation regardless of which index caused the error. More safety could be had by using the features discussed next to check that the trapped error was the one expected.

43.6.8.1. Obtaining Information about an Error

Exception handlers frequently need to identify the specific error that occurred. There are two ways to get information about the current exception in PL/pgSQL: special variables and the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

69 command.

Within an exception handler, the special variable

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

44 contains the error code that corresponds to the exception that was raised (refer to for a list of possible error codes). The special variable

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

71 contains the error message associated with the exception. These variables are undefined outside exception handlers.

Within an exception handler, one may also retrieve information about the current exception by using the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

69 command, which has the form:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

7

Each

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

73 is a key word identifying a status value to be assigned to the specified

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

74 (which should be of the right data type to receive it). The currently available status items are shown in .

Table 43.2. Error Diagnostics Items

Name Type Description

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

75

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the SQLSTATE error code of the exception

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

77

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the name of the column related to exception

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

79

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the name of the constraint related to exception

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

81

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the name of the data type related to exception

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

83

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the text of the exception's primary message

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

85

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the name of the table related to exception

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

87

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the name of the schema related to exception

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

89

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the text of the exception's detail message, if any

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

91

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 the text of the exception's hint message, if any

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

93

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

76 line(s) of text describing the call stack at the time of the exception (see )

If the exception did not set a value for an item, an empty string will be returned.

Here is an example:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

8

43.6.9. Obtaining Execution Location Information

The

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

95 command, previously described in , retrieves information about current execution state (whereas the

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

69 command discussed above reports information about the execution state as of a previous error). Its

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

97 status item is useful for identifying the current execution location.

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

97 returns a text string with line(s) of text describing the call stack. The first line refers to the current function and currently executing

RETURN NEXT expression; RETURN QUERY query; RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];

95 command. The second and any subsequent lines refer to calling functions further up the call stack. For example:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

9

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLAREr foo%rowtype; BEGINFOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();

00 returns the same sort of stack trace, but describing the location at which an error was detected, rather than the current location.

Chủ đề