Scientists are interested in determining the evolution of seven lizard species

1.

Abell, A. J. (1997). Estimating paternity with spatial behaviour and DNA fingerprinting in the striped plateau lizard, Sceloporus virgatus (Phrynosomatidae). Behavioral Ecology and Sociobiology 41, 217–226. https://doi.org/10.1007/s002650050382 Google Scholar

2.

Alonzo, S. H., and Sinervo, B. (2001). Mate choice games, contextdependent good genes, and genetic cycles in the side-blotched lizard, Uta stansburiana. Behavioral Ecology and Sociobiology 49, 176–186. https://doi.org/10.1007/s002650000265 Google Scholar

4.

Andersson, M. B. (1994). ‘Sexual Selection.’ (Princeton University Press: Princeton, NJ.) Google Scholar

5.

Andrews, R. M., Thompson, M. B., and Green, V. W. (2013). Does low gas permeability of rigid-shelled gekkotan eggs affect embryonic development? Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology 319, 259–267. Google Scholar

6.

Angilletta, M. J. (2009). ‘Thermal Adaptation: a Theoretical and Empirical Synthesis.’ (Oxford University Press: Oxford, UK.) Google Scholar

7.

Arnqvist, G. (2014). Cryptic female choice. In‘The Evolution of Insect Mating Systems’.(Eds S. D. Simmons and L. W. Simmons.) pp. 204–220. (Oxford University Press: Oxford, UK.) Google Scholar

8.

Bachtrog, D., Mank, J.E., Peichel, C.L., Kirkpatrick, M., Otto, S.P., Ashman, T.L., Hahn, M.W., Kitano, J., Mayrose, I., Ming, R., Perrin, N., Ross, L., Valenzuela, N., and Vamosi, J.C. Tree of Sex Consortium(2014). Sex determination: why so many ways of doing it? PLoS Biology 12, e1001899. https://doi.org/10.1371/journal.pbio.1001899 Google Scholar

10.

Biazik, J. M., Thompson, M. B., and Murphy, C. R. (2007). The tight junctional protein occludin is found in the uterine epithelium of squamate reptiles. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 177, 935–943. https://doi.org/10.1007/s00360-007-0192-1 Google Scholar

11.

Biazik, J. M., Thompson, M. B., and Murphy, C. R. (2008). Claudin-5 is restricted to the tight junction region of uterine epithelial cells in the uterus of pregnant/gravid squamate reptiles. The Anatomical Record 291, 547–556. https://doi.org/10.1002/ar.20677 Google Scholar

13.

Black, D. G. (1983). Encephalization of Australian lizards. Ph.D. Thesis, Monash University, Melbourne. Google Scholar

17.

Böhm, M., Collen, B., Baillie, J. E. M., Bowles, P., Chanson, J., and Cox, N. et al. (2013). The conservation status of the world's reptiles. Biological Conservation 157, 372–385. https://doi.org/10.1016/j.biocon.2012. 07.015 Google Scholar

18.

Böhme, W. (1995). Hemiclitoris discovered: a fully differentiated erectile structure in female monitor lizards (Varanus spp.) (Reptilia: Varanidae). Journal of Zoological Systematics and Evolutionary Research 33, 129–132. Google Scholar

19.

Böhme, W., and Ziegler, T. (2009). A review of iguanian and anguimorph lizard genitalia (Squamata: Chamaeleonidae; Varanoidea, Shinisauridae, Xenosauridae, Anguidae) and their phylogenetic significance: comparisons with molecular data sets. Journal of Zoological Systematics and Evolutionary Research 47, 189–202. https://doi.org/10.1111/j.1439-0469.2008.00495.x Google Scholar

20.

Bókony, V., Kövér, S., Nemesházi, E., Liker, A., and Székely, T. (2017). Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 20160325. https://doi.org/10.1098/rstb.2016.0325 Google Scholar

21.

Bonnett, M., and Bull, C. M. (2004). Egernia striolata (tree skink) reproduction. Herpetological Review 25, 389 Google Scholar

22.

Bordogna, G., Cunningham, G., Fitzpatrick, L. J., Halliwell, B., MacGregor, H. E. A., Munch, K. L., Wapstra, E., and While, G. M. (2016). An experimental test of relatedness-based mate discrimination in a social lizard. Behavioral Ecology and Sociobiology 70, 2139–2147. https://doi.org/10.1007/s00265-016-2217-9 Google Scholar

23.

Botterill-James, T., Halliwell, B., Cooper-Scott, E., Uller, T., Wapstra, E., and While, G. M. (2016). Habitat structure influences the extent of parent–offspring association in a social lizard. Frontiers in Social Evolution 4, 96. Google Scholar

24.

Boyd, J. W., Lechuga, T. J., Ebner, C. A., Kirby, M. A., and Yellon, S. M. (2009). Cervix remodeling and parturition in the rat: lack of a role for hypogastric innervation. Reproduction 137, 739–748. https://doi.org/10.1530/rep-08-0507 Google Scholar

25.

Boyle, M., Hone, J., Schwanz, L. E., and Georges, A. (2014). Under what conditions do climate-driven sex ratios enhance versus diminish population persistence? Ecology and Evolution 4, 4522–4533. https://doi.org/10.1002/ece3.1316 Google Scholar

26.

Bradbury, J. W., and Vehrencamp, S. L. (2011). ‘Principles of Animal Communication.’ 2nd edn. (Sinauer: Sunderland, MA.) Google Scholar

27.

Brandley, M. C., Bragg, J. G., Singhal, S., Chapple, D. G., Jennings, C. K., Lemmon, A. R., Lemmon, E. M., Thompson, M. B., and Moritz, C. (2015). Evaluating the performance of anchored hybrid enrichment at the tips of the tree of life: a phylogenetic analysis of Australian Eugongylus group scincid lizards. BMC Evolutionary Biology 15, 62. https://doi.org/10.1186/s12862-015-0318-0 Google Scholar

29.

Brennan, P. L., and Prum, R. O. (2015). Mechanisms and evidence of genital coevolution: the roles of natural selection, mate choice, and sexual conflict. In‘The Genetics and Biology of Sexual Conflict’. (Eds W. R. Rice and S. Gavrilets.) pp. 385–406. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.) Google Scholar

30.

Bukhari, S., Saul, M., James, N., Bensky, M., Stein, L., Trapp, R., and Bell, A. (2019). Neurogenomic insights into paternal care and its relation to territorial aggression. Nature Communications 10, 4437. https://doi.org/10.1038/s41467-019-12212-7 Google Scholar

37.

Bull, C. M., Bedford, G. S., and Schulz, B. A. (1993a). How do sleepy lizards find each other? Herpetologica 49, 294–300. Google Scholar

41.

Bull, C. M., Griffin, C. L., and Perkins, M. V. (1999b). Some properties of a pheromone allowing individual recognition, from the scats of an Australian lizard, Egernia striolata. Acta Ethologica 2, 35–42. https://doi.org/10.1007/pl00012230 Google Scholar

42.

Bull, C. M., Griffin, C. L., Lanham, E. J., and Johnston, G. R. (2000). Recognition of pheromones from group members in a gregarious lizard, Egernia stokesii. Journal of Herpetology 34, 92–99. https://doi.org/10.2307/1565244 Google Scholar

43.

Bull, C. M., Gardner, M. G., Sih, A., Spiegel, O., Godfrey, S. S., and Leu, S. (2017). Why is social behaviour rare in reptiles? Lessons from sleepy lizards. Advances in the Study of Behavior 49, 1–26. https://doi.org/10.1016/bs.asb.2017.02.001 Google Scholar

46.

Campos, S. M., Pruett, J. A., Soini, H. A., Zúñiga-Vega, J. J., Goldberg, J. K., Vital-García, C., Hews, D. K., Novotny, M. V., and Martins, E. P. (2020). Volatile fatty acid and aldehyde abundances evolve with behavior and habitat temperature in Sceloporus lizards. Behavioral Ecology 31, 978–991. https://doi.org/10.1093/beheco/araa044 Google Scholar

47.

Castelli, M. A., Georges, A., Cherryh, C., Rosauer, D. F., Sarre, S. D., Contador-Kelsall, I., and Holleley, C. E. (2021). Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard. Diversity & Distributions 27, 427–438. https://doi.org/10.1111/ddi.13203 Google Scholar

49.

Challis, J., Sloboda, D., Matthews, S., Holloway, A., Alfaidy, N., Howe, D., Fraser, M., and Newnham, J. (2000). Fetal hypothalamic-pituitary adrenal (HPA) development and activation as a determinant of the timing of birth, and of postnatal disease. Endocrine Research 26, 489–504. https://doi.org/10.3109/07435800009048560 Google Scholar

54.

Charnier, M. (1966). Action de la température sur le sex-ratio chez l'embryon d'Agama agama (Agamidae, Lacertilien). Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales 160, 1470–1472. Google Scholar

56.

Chávez-Genaro, R., Lombide, P., and Anesetti, G. (2006). A quantitative study of rat uterine sympathetic innervation during pregnancy and post partum. Reproduction, Fertility and Development 18, 525–531. https://doi.org/10.1071/rd05053 Google Scholar

57.

Chelini, M., Brock, K., Yeager, J., and Edwards, D. (2021). Environmental drivers of sexual dimorphism in a lizard with alternative mating strategies. Journal of Evolutionary Biology 34, 1241–1255. https://doi.org/10.1111/jeb.13881 Google Scholar

58.

Christian, K. (2004). Varanus panoptes. In‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. King.) pp. 423–429. (Indiana University Press: Bloomington.) Google Scholar

59.

Cogger, H. G. (2018). ‘Reptiles & Amphibians of Australia.’ 7th edn. (CSIRO Publishing: Melbourne.) Google Scholar

60.

Cole, C. J. (1966). Femoral glands in lizards: a review. Herpetologica 22, 199–206. Google Scholar

61.

Cooper, W. E. (1994). Chemical discrimination by tongue-flicking in lizards: a review with hypotheses on its origin and its ecological and phylogenetic relationships. Journal of Chemical Ecology 20, 439–487. https://doi.org/10.1007/bf02064449 Google Scholar

64.

Cooper, W. E., and Trauth, S. E. (1992). Discrimination of conspecific male and female cloacal chemical stimuli by males and possession of a probable pheromone gland by females in a cordylid lizard, Gerrhosaurus nigrolineatus. Herpetologica 48, 229–236. Google Scholar

65.

Corl, A., Davis, A. R., Kuchta, S. R., Comendant, T., and Sinervo, B. (2010a). Alternative mating strategies and the evolution of sexual size dimorphism in the side-blotched lizard, Uta stansburiana: a population-level comparative analysis. Evolution 64, 79–96. https://doi.org/10.1111/j.1558-5646.2009.00791.x Google Scholar

66.

Corl, A., Davis, A. R., Kuchta, S. R., and Sinervo, B. (2010b). Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proceedings of the National Academy of Sciences of the United States of America 107, 4254–4259. https://doi.org/10.1073/pnas.0909480107 Google Scholar

67.

Cornejo-Páramo, P., Dissanayake, D. S. B., Lira-Noriega, A., Martínez-Pacheco, M. L., Acosta, A., Ramírez-Suástegui, C., Méndez-de-la-Cruz, F. R., Székely, T., Urrutia, A. O., Georges, A., and Cortez, D. (2020a). Viviparous reptile regarded to have temperature-dependent sex determination has old XY chromosomes. Genome Biology and Evolution 12, 924–930. https://doi.org/10.1093/gbe/evaa104 Google Scholar

68.

Cornejo-Páramo, P., Lira-Noriega, A., Ramírez-Suástegui, C., Méndez-De-La-Cruz, F. R., Székely, T., Urrutia, A. O., and Cortez, D. (2020b). Sex determination systems in reptiles are related to ambient temperature but not to the level of climatic fluctuation. BMC Evolutionary Biology 20, 103. https://doi.org/10.1186/s12862-020-01671-y Google Scholar

74.

Cunningham, G. D., While, G. M., Olsson, M., Ljungström, G., and Wapstra, E. (2020). Degrees of change: between and within population variation in thermal reaction norms of phenology in a viviparous lizard. Ecology 101, e03136. https://doi.org/10.1002/ecy.3136 Google Scholar

75.

Darwin, C. (1871). ‘The Descent of Man, and Selection in Relation to Sex.’ (John Murray: London.) Google Scholar

77.

Dissanayake, D. S. B., Holleley, C. E., Hill, L. K., O'Meally, D., Deakin, J. E., and Georges, A. (2020). Identification of Y chromosome markers in the eastern three-lined skink (Bassiana duperreyi) using in silico whole genome subtraction. BMC Genomics 21, 667. https://doi.org/10.1186/s12864-020-07071-2 Google Scholar

79.

Dong, C., Johnston, G., Stuart-Fox, D., Moussalli, A., Rankin, K., and McLean, C. (2021a). Elevation of divergent color polymorphic and monomorphic lizard lineages (Squamata: Agamidae) to species level. Ichthyology & Herpetology 109, 43–54. https://doi.org/10.1643/h2020064 Google Scholar

80.

Dong, C. M., Rankin, K. J., McLean, C. A., and Stuart-Fox, D. (2021b). Maternal reproductive output and F1 hybrid fitness may influence contact zone dynamics. Journal of Evolutionary Biology 34, 680–694. https://doi.org/10.1111/jeb.13772 Google Scholar

81.

Doody, J. S., Freedberg, S., and Keogh, J. S. (2009). Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. The Quarterly Review of Biology 84, 229–252. https://doi.org/10.1086/605078 Google Scholar

83.

Doody, J. S., James, H., Ellis, R., Gibson, N., Raven, M., Mahony, S., Hamilton, D. G., Rhind, D., Clulow, S., and McHenry, C. R. (2014). Cryptic and complex nesting in the yellow-spotted monitor, Varanus panoptes. Journal of Herpetology 48, 363–370. https://doi.org/10.1670/13-006 Google Scholar

84.

Doody, J. S., James, H., Colyvas, K., Mchenry, C. R., and Clulow, S. (2015). Deep nesting in a lizard, déjà vu devil's corkscrews: first helical reptile burrow and deepest vertebrate nest. Biological Journal of the Linnean Society 116, 13–26. https://doi.org/10.1111/bij.12589 Google Scholar

85.

Doody, J. S., Rhind, D., Green, B., Castellano, C., McHenry, C., and Clulow, S. (2017). Chronic effects of an invasive species on an animal community. Ecology 98, 2093–2101. https://doi.org/10.1002/ecy.1889 Google Scholar

86.

Doody, J. S., McHenry, C., Brown, M., Canning, G., Vas, G., and Clulow, S. (2018a). Deep, helical, communal nesting and emergence in the sand monitor: ecology informing paleoecology? Journal of Zoology 305, 88–95. https://doi.org/10.1111/jzo.12543 Google Scholar

87.

Doody, J. S., McHenry, C. R., Durkin, L., Brown, M., Simms, A., Coleman, L., Phizacklea, C., Jones, H., Phizacklea, O., and Clulow, S. (2018b). Deep communal nesting by yellow-spotted monitors in a desert ecosystem: indirect evidence for a response to extreme dry conditions. Herpetologica 74, 306–310. https://doi.org/10.1655/herpetologica-d-18-00004.1 Google Scholar

88.

Doody, J. S., McGlashan, J., Fryer, H., Coleman, L., James, H., Soennichsen, K., Rhind, D., and Clulow, S. (2020). Plasticity in nest site choice behavior in response to hydric conditions in a reptile. Scientific Reports 10, 16048. https://doi.org/10.1038/s41598-020-73080-6 Google Scholar

89.

Doody, J. S., Burghardt, G. M., and Dinets, V. (2021a). ‘The Secret Social Lives of Reptiles.’ (Johns Hopkins University Press: Baltimore, MD.) Google Scholar

90.

Doody, J. S., Soennichsen, K. F., James, H., McHenry, C., and Clulow, S. (2021b). Ecosystem engineering by deep-nesting monitor lizards. Ecology 102, e03271. https://doi.org/10.1002/ecy.3271 Google Scholar

94.

Düsing, C. (1884). Die Regulierung des Geschlechtsverhältnisses bei der Vermehrung der Menschen, Tiere und Pflanzen. Jenaische Zeitschrift Für Naturwissenschaft 17, 593–940. [translated by Edwards, A., 2000. Düsing, K. (1884). On the regulation of the sex ratio. Theoretical Population Biology 58, 255–257] Google Scholar

95.

Eberhard, W. G. (1996). ‘Female Control: Sexual Selection by Cryptic Female Choice.’ (Princeton University Press: Princeton, NJ.) Google Scholar

96.

Ebrahimi, M., Godfrey, S. S., Fenner, A. L., and Bull, C. M. (2014). Mating behaviour in pygmy bluetongue lizards: do females ‘attract’ male lizards? Australian Journal of Zoology 62, 491–497. https://doi.org/10.1071/zo14055 Google Scholar

98.

Edwards, D. L., Melville, J., Joseph, L., and Keogh, J. S. (2015). Ecological divergence, adaptive diversification, and the evolution of social signaling traits: an empirical study in arid Australian lizards. American Naturalist 186, E144–E161. https://doi.org/10.1086/683658 Google Scholar

99.

Eizaguirre, C., Laloi, D., Massot, M., Richard, M., Federici, P., and Clobert, J. (2007). Condition dependence of reproductive strategy and the benefits of polyandry in a viviparous lizard. Proceedings of the Royal Society B: Biological Sciences 274, 425–430. https://doi.org/10.1098/rspb.2006.3740 Google Scholar

100.

Ezaz, T., Sarre, S. D., O'Meally, D., Graves, J. A. M., and Georges, A. (2009). Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenetic and Genome Research 127, 249–260. https://doi.org/10.1159/000300507 Google Scholar

101.

Fenner, A. L., Pavey, C., and Bull, C. M. (2012). Behavioural observations and use of burrow systems by an endangered Australian arid-zone lizard, Slater's skink (Liopholis slateri). Australian Journal of Zoology 60, 127–132. https://doi.org/10.1071/zo12047 Google Scholar

104.

Fischer, E., Roland, A., Moskowitz, N., Tapia, E., Kyle, S., Coloma, L., and O'Connell, L. (2019). The neural basis of tadpole transport in poison frogs. Proceedings of the Royal Society B: Biological Sciences 286, 20191084. https://doi.org/10.1098/rspb.2019.1084 Google Scholar

105.

Fisher, R. A. (1930). ‘The Genetical Theory of Natural Selection.’ (Clarendon Press: Oxford, UK.) Google Scholar

106.

Fisher, R. A. (1958). ‘The Genetical Theory of Natural Selection.’ (Dover Publications, Inc.: New York.) Google Scholar

107.

Fitze, P. S., Galliard, J. F. L., Federici, P., Richard, M., and Clobert, J. (2005). Conflict over multiple-partner mating between males and females of the polygynandrous common lizards. Evolution 59, 2451–2459. https://doi.org/10.1111/j.0014-3820.2005.tb00954.x Google Scholar

108.

Foster, C. S. P., Thompson, M. B., Van Dyke, J. U., Brandley, M. C., and Whittington, C. M. (2020). Emergence of an evolutionary innovation: gene expression differences associated with the transition between oviparity and viviparity. Molecular Ecology 29, 1315–1327. https://doi.org/10.1111/mec.15409 Google Scholar

109.

Fox, S. F., and Shipman, P. A. (2003). Social behavior at high and low elevations: environmental release and phylogenetic effects in Liolaemus. In‘Lizard Social Behavior’. (Eds S. F. Fox, J. K. McCoy, and T. A. Baird.) pp. 310–355. (Johns Hopkins University Press: Baltimore and London.) Google Scholar

111.

Friesen, C. R., Uhrig, E. J., Squire, M. K., Mason, R. T., and Brennan, P. L. R. (2014). Sexual conflict over mating in red-sided garter snakes (Thamnophis sirtalis) as indicated by experimental manipulation of genitalia. Proceedings of the Royal Society B: Biological Sciences 281, 20132694. https://doi.org/10.1098/rspb.2013.2694 Google Scholar

112.

Friesen, C. R., Uhrig, E. J., Mason, R. T., and Brennan, P. L. R. (2016). Female behaviour and the interaction of male and female genital traits mediate sperm transfer during mating. Journal of Evolutionary Biology 29, 952–964. https://doi.org/10.1111/jeb.12836 Google Scholar

113.

Friesen, C. R., Johansson, R., and Olsson, M. (2017a). Morph-specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon. Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology 327, 433–443. https://doi.org/10.1002/jez.2118 Google Scholar

114.

Friesen, C. R., Wilson, M. R., Rollings, N., Sudyka, J., Whittington, C. M., Giraudeau, M., and Olsson, M. (2017b). Conditional handicaps in exuberant lizards: bright color in aggressive males is correlated with high levels of free radicals. Frontiers in Ecology and Evolution 5, 1. https://doi.org/10.3389/fevo.2017.00001 Google Scholar

118.

Friesen, C. R., Rollings, N., Wilson, M., Whittington, C. M., Shine, R., and Olsson, M. (2020c). Covariation in superoxide, sperm telomere length and sperm velocity in a polymorphic reptile. Behavioral Ecology and Sociobiology 74, 74. https://doi.org/10.1007/s00265-020-02855-8 Google Scholar

119.

Friesen, C. R., Wilson, M., Rollings, N., Sudyka, J., Giraudeau, M., Whittington, C. M., and Olsson, M. (2021). Exercise training has morph-specific effects on telomere, body condition and growth dynamics in a color-polymorphic lizard. The Journal of Experimental Biology 224, jeb242164. https://doi.org/10.1242/jeb.242164 Google Scholar

120.

García-Roa, R., Jara, M., Baeckens, S., López, P., Damme, R. V., Martín, J., and Pincheira-Donoso, D. (2017). Macroevolutionary diversification of glands for chemical communication in squamate reptiles. Scientific Reports 7, 9288. https://doi.org/10.1038/s41598-017-09083-7 Google Scholar

124.

Gardner, M. G., Hugall, A., Donnellan, S. C., Hutchinson, M., and Foster, R. (2008). Molecular systematics of social skinks: phylogeny and taxonomy of the Egernia group (Reptilia: Scincidae). Zoological Journal of the Linnean Society 154, 781–794. https://doi.org/10.1111/j.1096-3642.2008.00422.x Google Scholar

125.

Gardner, M. G., Godfrey, S. S., Fenner, A. L., Donnellan, S. C., and Bull, C. M. (2012). Fine-scale spatial structuring as an inbreeding avoidance mechanism in the social skink Egernia stokesii. Australian Journal of Zoology 60, 272–277. https://doi.org/10.1071/zo12089 Google Scholar

126.

Gardner, M. G., Pearson, S. K., Johnston, G. R., and Schwarz, M. P. (2016). Group living in squamate reptiles: a review of evidence for stable aggregations. Biological Reviews of the Cambridge Philosophical Society 91, 925–936. https://doi.org/10.1111/brv.12201 Google Scholar

130.

Greer, A. E. (1989). ‘The Biology and Evolution of Australian Lizards.’ (Surrey Beatty and Sons: Chipping Norton, Australia.) Google Scholar

132.

Griffith, O. W., Ujvari, B., Belov, K., and Thompson, M. B. (2013). Placental lipoprotein lipase (LPL) gene expression in a placentotrophic lizard, Pseudemoia entrecasteauxii. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 320, 465–470. https://doi.org/10.1002/jez.b.22526 Google Scholar

133.

Griffith, O. W., Brandley, M. C., Belov, K., and Thompson, M. B. (2016). Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii. Development Genes and Evolution 226, 79–85. https://doi.org/10.1007/s00427-016-0531-x Google Scholar

134.

Griffith, O. W., Brandley, M. C., Whittington, C. M., Belov, K., and Thompson, M. B. (2017). Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes. General and Comparative Endocrinology 244, 19–29. https://doi.org/10.1016/j.ygcen.2016.04.017 Google Scholar

136.

Hacking, J., Stuart-Fox, D., and Gardner, M. (2017). Very low rate of multiple paternity detected in clutches of a wild agamid lizard. Australian Journal of Zoology 65, 328–334. https://doi.org/10.1071/zo18006 Google Scholar

138.

Halliwell, B., Uller, T., Chapple, D., Gardner, M. G., Wapstra, E., and While, G. M. (2017a). Habitat saturation promotes delayed dispersal in a social reptile. Behavioral Ecology 28, 515–522. https://doi.org/10.1093/beheco/arw181 Google Scholar

140.

Harlow, P. (2004). Temperature-dependent sex determination in lizards. In‘Temperature-dependent Sex Determination in Vertebrates’. (Eds N. Valenzuela and V. A. Lance.) pp. 42–52. (Smithsonian Books: Washington, DC.) Google Scholar

142.

Head, M. L., Doughty, P., Blomberg, S. P., and Keogh, J. S.(2008). Chemical mediation of reciprocal mother–offspring recognition in the southern water skink (Eulamprus heatwolei): chemical mediation of kin recognition in a lizard. Austral Ecology 33, 20–28. https://doi.org/10.1111/j.1442-9993.2007.01785.x Google Scholar

145.

Hendrawan, K., Whittington, C. M., Brandley, M. C., Belov, K., and Thompson, M. B. (2017). The regulation of uterine proinflammatory gene expression during pregnancy in the live-bearing lizard, Pseudemoia entrecasteauxii. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 328, 334–346. https://doi.org/10.1002/jez.b.22733 Google Scholar

147.

Hill, P. L., Burridge, C. P., Ezaz, T., and Wapstra, E. (2018). Conservation of sex-linked markers among conspecific populations of a viviparous skink, Niveoscincus ocellatus, exhibiting genetic and temperature-dependent sex determination. Genome Biology and Evolution 10, 1079–1087. https://doi.org/10.1093/gbe/evy042 Google Scholar

148.

Hill, P., Shams, F., Burridge, C. P., Wapstra, E., and Ezaz, T. (2021a). Differences in homomorphic sex chromosomes are associated with population divergence in sex determination in Carinascincus ocellatus (Scincidae: Lygosominae). Cells 10, 291. https://doi.org/10.3390/cells10020291 Google Scholar

149.

Hill, P. L., Wapstra, E., Ezaz, T., and Burridge, C. P. (2021b). Pleistocene divergence in the absence of gene flow among populations of a viviparous reptile with intraspecific variation in sex determination Ecology and Evolution 11, 5575–5583. https://doi.org/10.1002/ece3.7458 Google Scholar

150.

Holleley, C. E., O'Meally, D., Sarre, S. D., Marshall Graves, J. A., Ezaz, T., Matsubara, K., Azad, B., Zhang, X., and Georges, A. (2015). Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523, 79–82. https://doi.org/10.1038/nature14574 Google Scholar

151.

Holleley, C. E., Sarre, S. D., O'Meally, D., and Georges, A. (2016). Sex reversal in reptiles: reproductive oddity or powerful driver of evolutionary change? Sexual Development 10, 279–287. https://doi.org/10.1159/000450972 Google Scholar

152.

Hoops, D., Ullmann, J. F. P., Janke, A. L., Vidal-García, M., Gardner, T. S., Dwihapsari, Y., Merkling, T., Price, W. S., Endler, J. A., Whiting, M. J., and Keogh, J. S. (2017). Sexual selection predicts brain structure in dragon lizards. Journal of Evolutionary Biology 30, 244–256. https://doi.org/10.1111/jeb.12984 Google Scholar

154.

Huey, R. B., Pianka, E. R., and Schoener, T. W. (1983). ‘Lizard Ecology: Studies of a Model Organism.’ (Harvard University Press: Cambridge, MA.) Google Scholar

159.

Itonaga, K., Wapstra, E., and Jones, S. M. (2012b). A novel pattern of placental leucine transfer during mid to late gestation in a highly placentotrophic viviparous lizard. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 318, 308–315. https://doi.org/10.1002/jez.b.22446 Google Scholar

161.

Janzen, F. J., and Krenz, J. G. (2004). Phylogenetics: which was first, TSD or GSD? In‘Temperature-Dependent Sex Determination in Vertebrates’. (Eds N. Valenzuela, and V. A. Lance) pp. 121–130. (Smithsonian Institution: Washington, DC.) Google Scholar

164.

Johnson, M. A., Cohen, R. E., Vandecar, J. R., and Wade, J. (2011). Relationships among reproductive morphology, behavior, and testosterone in a natural population of green anole lizards. Physiology & Behavior 104, 437–445. https://doi.org/10.1016/j.physbeh.2011.05.004 Google Scholar

166.

Jones, S. M., and Swain, R. (2000). Effects of exogenous FSH on follicular recruitment in a viviparous lizard Niveoscincus metallicus (Scincidae). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 127, 487–493. https://doi.org/10.1016/s1095-6433(00)00279-8 Google Scholar

171.

Keogh, J. S., Umbers, K. D., Wilson, E., Stapley, J., and Whiting, M. J. (2013). Influence of alternate reproductive tactics and pre- and postcopulatory sexual selection on paternity and offspring performance in a lizard. Behavioral Ecology and Sociobiology 67, 629–638. https://doi.org/10.1007/s00265-013-1482-0 Google Scholar

172.

King, D., and Green, B. (1999). ‘Goannas: The Biology of Varanid Lizards.’ (UNSW Press: Kensington, NSW.) Google Scholar

175.

Kvarnemo, C., and Simmons, L. W. (2013). Polyandry as a mediator of sexual selection before and after mating. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368, 20120042. https://doi.org/10.1098/rstb.2012.0042 Google Scholar

179.

Laloi, D., Richard, M., Fédérici, P., Clobert, J., Teillac-Deschamps, P., and Massot, M. (2009). Relationship between female mating strategy, litter success and offspring dispersal. Ecology Letters 12, 823–829. https://doi.org/10.1111/j.1461-0248.2009.01335.x Google Scholar

181.

Le Galliard, J. F., Fitze, P. S., Ferriere, R., and Clobert, J. (2005). Sex ratio bias, male aggression, and population collapse in lizards. Proceedings of the National Academy of Sciences of the United States of America 102, 18231–18236. https://doi.org/10.1073/pnas.0505172102 Google Scholar

183.

Leu, S., Burzacott, D., Whiting, M., and Bull, C. M. (2015). Mate familiarity affects pairing behaviour in a long-term monogamous lizard: evidence from detailed bio-logging and a 31-year field study. Ethology 121, 760–768. https://doi.org/10.1111/eth.12390 Google Scholar

185.

Linville, B. J., Stewart, J. R., Ecay, T. W., Herbert, J. F., Parker, S. L., and Thompson, M. B. (2010). Placental calcium provision in a lizard with prolonged oviductal egg retention. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 180, 221–227. https://doi.org/10.1007/s00360-009-0400-2 Google Scholar

186.

Lovern, M. B., Holmes, M. M., and Wade, J. (2004). The green anole (Anolis carolinensis): a reptilian model for laboratory studies of reproductive morphology and behavior. ILAR Journal 45, 54–64. https://doi.org/10.1093/ilar.45.1.54 Google Scholar

188.

Lüpold, S., de Boer, R. A., Evans, J. P., Tomkins, J. L., and Fitzpatrick, J. L. (2020). How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 375, 20200064. https://doi.org/10.1098/rstb.2020.0064 Google Scholar

193.

Manning, B. (2002). Notes on the captive breeding of the swamp skink (Egernia coventryi). Herpetofauna 32, 35–38. Google Scholar

196.

Martín, J., and López, P. (2011). Pheromones and reproduction in reptiles. In‘Hormones and Reproduction of Vertebrates’. (Eds D. O. Norris, and K. H. Lopez.) pp. 141–167. (Academic Press: San Diego, CA.) Google Scholar

197.

Martínez-Torres, M., Rubio-Morales, B., Piña-Amado, J. J., and Luis, J. (2015). Hemipenes in females of the mexican viviparous lizard Barisia imbricata (Squamata: Anguidae): an example of heterochrony in sexual development. Evolution & Development 17, 270–277. https://doi.org/10.1111/ede.12134 Google Scholar

201.

Maynard Smith, J., and Szathmáry, E. (1997). ‘The Major Transitions in Evolution.’ (Oxford University Press: Oxford, UK.) Google Scholar

202.

McDiarmid, R. W., Foster, M. S., Guyer, C., Gibbons, J. W., and Chernoff, N. (2012). ‘Reptile Biodiversity: Standard Methods for Inventory and Monitoring.’ (University of California Press: Berkeley, CA.) Google Scholar

203.

McDiarmid, C. S., Friesen, C. R., Ballen, C., and Olsson, M. (2017). Sexual coloration and sperm performance in the Australian painted dragon lizard, Ctenophorus pictus. Journal of Evolutionary Biology 30, 1303–1312. https://doi.org/10.1111/jeb.13092 Google Scholar

204.

McLean, C. A., Stuart-Fox, D., and Moussalli, A. (2014). Phylogeographic structure, demographic history and morph composition in a colour polymorphic lizard. Journal of Evolutionary Biology 27, 2123–2137. https://doi.org/10.1111/jeb.12464 Google Scholar

206.

Meiri, S., Avila, L., Bauer, A. M., Chapple, D. G., Das, I., Doan, T. M., Doughty, P., Ellis, R., Grismer, L., Kraus, F., Morando, M., Oliver, P., Pincheira-Donoso, D., Ribeiro-Junior, M. A., Shea, G., Torres-Carvajal, O., Slavenko, A., and Roll, U. (2020). The global diversity and distribution of lizard clutch sizes. Global Ecology and Biogeography 29, 1515–1530. https://doi.org/10.1111/geb.13124 Google Scholar

207.

Melville, J, Chapple, D. G., Keogh, J. S., Sumner, J, Amey, A, and Bowles, P et al. (2021). A return-on-investment approach for prioritization of rigorous taxonomic research needed to inform responses to the biodiversity crisis. PLoS Biology 19, e3001210. https://doi.org/10.1371/journal.pbio.3001210 Google Scholar

209.

Mesquita, D. O., Costa, G. C., Colli, G. R., Costa, T. B., Shepard, D. B., Vitt, L. J., and Pianka, E. R. (2016). Life-history patterns of lizards of the world. American Naturalist 187, 689–705. https://doi.org/10.1086/686055 Google Scholar

210.

Milstead, W. (1967). ‘Lizard Ecology: A Symposium.’ (University of Missouri Press: Columbia, MO.) Google Scholar

212.

Mitchell, N. J., Kearney, M. R., Nelson, N. J., and Porter, W. P. (2008). Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara? Proceedings of the Royal Society B: Biological Sciences 275, 2185–2193. https://doi.org/10.1098/rspb.2008.0438 Google Scholar

219.

Munch, K., Noble, D., Budd, L., Row, A., Wapstra, E., and While, G. M. (2018). Maternal presence facilitates plasticity in offspring behavior: insights into the evolution of parental care. Behavioral Ecology 29, 1298–1306. https://doi.org/10.1093/beheco/ary122 Google Scholar

220.

Murphy, C. R., Hosie, M. J., and Thompson, M. B. (2000). The plasma membrane transformation facilitates pregnancy in both reptiles and mammals. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 127, 433–439. https://doi.org/10.1016/ s1095-6433(00)00274-9 Google Scholar

222.

Murphy, B. F., Parker, S. L., Murphy, C. R., and Thompson, M. B. (2010). Angiogenesis of the uterus and chorioallantois in the eastern water skink Eulamprus quoyii. The Journal of Experimental Biology 213, 3340–3347. https://doi.org/10.1242/jeb.046862 Google Scholar

224.

Neaves, L., Wapstra, E., Birch, D., Girling, J. E., and Joss, J. M. P. (2006). Embryonic gonadal and sexual organ development in a small viviparous skink, Niveoscincus ocellatus. Journal of Experimental Zoology. Part A, Comparative Experimental Biology 305A, 74–82. https://doi.org/10.1002/jez.a.249 Google Scholar

227.

Nowicki, J., Pratchett, M., Walker, S., Coker, D., and O'Connell, L. (2020). Gene expression correlates of social evolution in coral reef butterflyfishes. Proceedings of the Royal Society B: Biological Sciences 287, 20200239. https://doi.org/10.1098/rspb.2020.0239 Google Scholar

228.

Numan, M. (2014). ‘Neurobiology of Social Behavior: Toward an Understanding of the Prosocial and Antisocial Brain.’ (Academic Press: New York, NY.) Google Scholar

232.

Olsson, M. (1995). Forced copulation and costly female resistance behavior in the Lake Eyre dragon, Ctenophorus maculosus. Herpetologica 51, 19–24. Google Scholar

235.

Olsson, M., and Shine, R. (1998). Chemosensory mate recognition may facilitate prolonged mate guarding by male snow skinks, Niveoscincus microlepidotus. Behavioral Ecology and Sociobiology 43, 359–363. https://doi.org/10.1007/s002650050502 Google Scholar

236.

Olsson, M., Gullberg, A., Shine, R., Madsen, T., and Tegelström, H.(1996a). Paternal genotype influences incubation period, offspring size, and offspring shape in an oviparous reptile. Evolution 50, 1328–1333. https://doi.org/10.1111/j.1558-5646.1996.tb02372.x Google Scholar

237.

Olsson, M., Shine, R., Madsen, T., Gullberg, A., and Tegelström, H. (1996b). Sperm selection by females. Nature 383, 585. https://doi.org/10.1038/383585a0 Google Scholar

238.

Olsson, M., Shine, R., Madsen, T., Gullberg, A., and Tegelström, H. (1997). Sperm choice by females. Trends in Ecology & Evolution 12, 445–446. https://doi.org/10.1016/s0169-5347(97)85751-5 Google Scholar

240.

Olsson, M., Ujvari, B., Wapstra, E., Madsen, T., Shine, R., and Bensch, S. (2005). Does mate guarding prevent rival mating in snow skinks? A test using AFLP. Herpetologica 61, 389–394. https://doi.org/10.1655/04-85.1 Google Scholar

247.

Ossip-Klein, A. G., Fuentes, J. A., Hews, D. K., and Martins, E. P. (2013). Information content is more important than sensory system or physical distance in guiding the long-term evolutionary relationships between signaling modalities in Sceloporus lizards. Behavioral Ecology and Sociobiology 67, 1513–1522. https://doi.org/10.1007/s00265-013-1535-4 Google Scholar

251.

Parker, G. A. (1998). Sperm competition and the evolution of ejaculates: towards a theory base. In‘Sperm Competition and Sexual Selection’. (Eds T. R. Birkhead, and A. P. Møller.) pp. 3–49. (Academic Press: San Deigo, CA.) Google Scholar

252.

Parker, M. R., and Mason, R. T. (2012). How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes. The Journal of Experimental Biology 215, 723–730. https://doi.org/10.1242/jeb.064923 Google Scholar

254.

Parker, G. A., and Pizzari, T. (2010). Sperm competition and ejaculate economics. Biological Reviews of the Cambridge Philosophical Society 85, 897–934. Google Scholar

255.

Parker, S. L., Manconi, F., Murphy, C. R., and Thompson, M. B. (2010a). Uterine and placental angiogenesis in the Australian skinks, Ctenotus taeniolatus, and Saiphos equalis. The Anatomical Record 293, 829–838. https://doi.org/10.1002/ar.21052 Google Scholar

256.

Parker, S. L., Murphy, C. R., and Thompson, M. B. (2010b). Uterine angiogenesis in squamate reptiles: implications for the evolution of viviparity. Herpetological Conservation and Biology 5, 330–334. Google Scholar

257.

Paul, J. W., Kemsley, J. O., Butler, T. A., Tolosa, J. M., Thompson, M. B., Smith, R., and Whittington, C. M. (2020). A comparison of uterine contractile responsiveness to arginine vasopressin in oviparous and viviparous lizards. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 190, 49–62. https://doi.org/10.1007/s00360-019-01254-4 Google Scholar

258.

Pearson, S. K., Godfrey, S. S., Bull, C. M., and Gardner, M. (2016). Larger lizards live longer in the group-living Egernia stokesii. Australian Journal of Zoology 64, 182–191. https://doi.org/10.1071/zo16024 Google Scholar

259.

Peck, S., Gardner, M. G., Seddon, J. M., and Baxter, G. (2016). Life-history characteristics of the yakka skink, Egernia rugosa, indicate long-term social structure. Australian Journal of Zoology 64, 335–343. https://doi.org/10.1071/zo16061 Google Scholar

260.

Pen, I., Uller, T., Feldmeyer, B., Harts, A., While, G. M., and Wapstra, E. (2010). Climate-driven population divergence in sex-determining systems. Nature 468, 436–438. https://doi.org/10.1038/nature09512 Google Scholar

265.

Pieau, C. (1972). Effects de la temperature sur le developpement des glandes genitales chez les embyons de deux Chelonians, Testudo greca L. et Emys orbicularis L. Comptes rendus de l'Académie des Sciences (Paris) 274, 719–722. Google Scholar

267.

Platel, M. R. (1979). Brain weight–body weight relationships. In‘Biology of the Reptilia. Vol. 9’. (Eds C. Gans, R. G. Northcutt, and P. Ulinski.) pp. 147–171. (Academic Press: London.) Google Scholar

269.

Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F., and Meiri, S. (2010). Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography 19, 386–396. https://doi.org/10.1111/j.1466-8238.2009.00521.x Google Scholar

271.

Quinn, A. E., Georges, A., Sarre, S. D., Guarino, F., Ezaz, T., and Graves, J. A. M. (2007). Temperature sex reversal implies sex gene dosage in a reptile. Science 316, 411. https://doi.org/10.1126/science.1135925 Google Scholar

272.

Radder, R. S., Quinn, A. E., Georges, A., Sarre, S. D., and Shine, R. (2008). Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard. Biology Letters 4, 176–178. https://doi.org/10.1098/rsbl.2007.0583 Google Scholar

274.

Rankin, K. J., McLean, C. A., Kemp, D. J., and Stuart-Fox, D. (2016). The genetic basis of discrete and quantitative colour variation in the polymorphic lizard, Ctenophorus decresii. BMC Evolutionary Biology 16, 179. https://doi.org/10.1186/s12862-016-0757-2 Google Scholar

277.

Rollings, N., Friesen, C. R., Sudyka, J., Whittington, C., Giraudeau, M., Wilson, M., and Olsson, M. (2017). Telomere dynamics in a lizard with morph-specific reproductive investment and self-maintenance. Ecology and Evolution 7, 5163–5169. https://doi.org/10.1002/ece3.2712 Google Scholar

278.

Romero-Diaz, C., Campos, S. M., Herrmann, M. A., Soini, H. A., Novotny, M. V., Hews, D. K., and Martins, E. P. (2021). Composition and compound proportions affect the response to complex chemical signals in a spiny lizard. Behavioral Ecology and Sociobiology 75, 42. https://doi.org/10.1007/s00265-021-02987-5 Google Scholar

279.

Rubenstein, D. R., and Abbot, P. (2017). ‘Comparative Social Evolution.’ (Cambridge University Press: Cambridge, UK.) Google Scholar

280.

Ruiz-Monachesi, M. R., Paz, A., and Quipildor, M. (2019). Hemipenes eversion behavior: a new form of communication in two Liolaemus lizards (Iguania: Liolaemidae). Canadian Journal of Zoology 97, 187–194. https://doi.org/10.1139/cjz-2018-0195 Google Scholar

284.

Schofield, J., Gardner, M. G., Fenner, A. L., and Bull, C. M. (2014). Promiscuous mating in the endangered Australian lizard Tiliqua adelaidensis: a potential windfall for its conservation. Conservation Genetics 15, 177–185. https://doi.org/10.1007/s10592-013-0529-0 Google Scholar

285.

Schwanz, L. E., Georges, A., Holleley, C. E., and Sarre, S. D. (2020). Climate change, sex reversal and lability of sex-determining systems. Journal of Evolutionary Biology 33, 270–281. https://doi.org/10.1111/jeb.13587 Google Scholar

290.

Scott, M. L., Llewelyn, J., Higgie, M., Hoskin, C. J., Pike, K., and Phillips, B. L. (2015). Chemoreception and mating behaviour of a tropical Australian skink. Acta Ethologica 18, 283–293. https://doi.org/10.1007/s10211-015-0213-0 Google Scholar

291.

Shine, R. (1988). Parental care in reptiles In‘Biology of the Reptilia. Vol. 16’. (Eds C. Gans, and R. Huey.) pp. 275–330. (Liss: New York.) Google Scholar

297.

Shine, R., Reed, R. N., Shetty, S., Lemaster, M., and Mason, R. T. (2002b). Reproductive isolating mechanisms between two sympatric sibling species of sea snakes. Evolution 56, 1655–1662. https://doi.org/10.1111/j.0014-3820.2002.tb01477.x Google Scholar

298.

Siegel, D. S., Trauth, S. E., Rheubert, J. L., Rabe, B., Ruopp, B., Miralles, A., Murray, C. M., and Aldridge, R. D. (2014). Novel cloacal glands in snakes: the phylogenetic distribution of ventral urodaeal glands in Thamnophiini. Herpetologica 70, 279–289. https://doi.org/10.1655/herpeto logica-d-13-00097 Google Scholar

301.

Sinervo, B., Méndez-de-la-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lázaro, R. N., Gadsden, H., Avila, L. J., Morando, M., De la Riva, I. J., Sepulveda, P. V., Rocha, C. F. D., Ibargüengoytía, N., Puntriano, C. A., Massot, M., Lepetz, V., Oksanen, T. A., Chapple, D. G., Bauer, A. M., Branch, W. R., Clobert, J., and Sites, J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899. https://doi.org/10.1126/science.1184695 Google Scholar

306.

Somaweera, R., Nifong, J., Rosenblatt, A., Brien, M. L., Combrink, X., Elsey, R. M., Grigg, G., Magnusson, W. E., Mazzotti, F. J., and Pearcy, A. (2020). The ecological importance of crocodylians: towards evidence-based justification for their conservation. Biological Reviews of the Cambridge Philosophical Society 95, 936–959. https://doi.org/10.1111/brv.12594 Google Scholar

307.

Somma, L. A. (2003). ‘Parental Behavior in Lepidosaurian and Testudinian Reptiles: a Literature Survey.’ (Krieger Publishing Company: Malabar.) Google Scholar

309.

Stapley, J., Hayes, C. M., and Scott Keogh, J. (2003). Population genetic differentiation and multiple paternity determined by novel microsatellite markers from the mountain log skink (Pseudemoia entrecasteauxii). Molecular Ecology Notes 3, 291–293. https://doi.org/10.1046/j.1471-8286.2003.00429.x Google Scholar

310.

Steele, A. L., Wibbels, T., and Warner, D. A. (2018). Revisiting the first report of temperature-dependent sex determination in a vertebrate, the African redhead agama. Journal of Zoology 306, 16–22. https://doi.org/10.1111/jzo.12560 Google Scholar

312.

Stewart, J. R. (1989). Facultative placentotrophy and the evolution of squamate placentation: quality of eggs and neonates in Virginia striatula. American Naturalist 133, 111–137. https://doi.org/10.1086/284904 Google Scholar

317.

Stow, A. J., Sunnucks, P., Briscoe, D. A., and Gardner, M. G. (2001). The impact of habitat fragmentation on dispersal of Cunningham's skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites. Molecular Ecology 10, 867–878. https://doi.org/10.1046/j.1365-294x.2001.01253.x Google Scholar

318.

Stuart-Fox, D., Aulsebrook, A., Rankin, K., Dong, C., and McLean, C. (2021). Convergence and divergence in lizard colour polymorphisms. Biological Reviews of the Cambridge Philosophical Society 96, 289–309. https://doi.org/10.1111/brv.12656 Google Scholar

320.

Sun, B. J., Li, S. R., Xu, X. F., Zhao, W. G., Luo, L. G., Ji, X., and Du, W. G. (2013). Different mechanisms lead to convergence of reproductive strategies in two lacertid lizards (Takydromus wolteri and Eremias argus). Oecologia 172, 645–652. https://doi.org/10.1007/s00442-012-2524-4 Google Scholar

321.

Svensson, E. I., Willink, B., Duryea, M. C., and Lancaster, L. T. (2020). Temperature drives pre-reproductive selection and shapes the biogeography of a female polymorphism. Ecology Letters 23, 149–159. https://doi.org/10.1111/ele.13417 Google Scholar

325.

Teasdale, L. C., Stevens, M., and Stuart-Fox, D. (2013). Discrete colour polymorphism in the tawny dragon lizard (Ctenophorus decresii) and differences in signal conspicuousness among morphs. Journal of Evolutionary Biology 26, 1035–1046. https://doi.org/10.1111/jeb.12115 Google Scholar

329.

Thompson, M. B., and Speake, B. K. (2006). A review of the evolution of viviparity in lizards: structure, function and physiology of the placenta. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 176, 179–189. https://doi.org/10.1007/s00360-005-0048-5 Google Scholar

330.

Thompson, M. B., Stewart, J. R., and Speake, B. K. (2000). Comparison of nutrient transport across the placenta of lizards differing in placental complexity. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 127, 469–479. https://doi.org/10.1016/s1095-6433(00)00277-4 Google Scholar

332.

Tinkle, D. W., and Gibbons, J. W. (1977). ‘The Distribution and Evolution of Viviparity in Reptiles.’ (Museum of Zoology, University of Michigan: Ann Arbor, MI.) Google Scholar

339.

Uller, T., Pen, I., Wapstra, E., Beukeboom, L. W., and Komdeur, J. (2007). The evolution of sex ratios and sex-determining systems. Trends in Ecology & Evolution 22, 292–297. https://doi.org/10.1016/j.tree.2007.03.008 Google Scholar

340.

Uller, T., Stuart-Fox, D., and Olsson, M. (2010). Evolution of primary sexual characters in reptiles. In‘Evolution of Primary Sexual Characters in Animals’. (Eds J. L. Leonard, and A. Córdoba-Aguilar.) pp. 425–452. (Oxford University Press: Oxford.) Google Scholar

342.

Valenzuela, N., Literman, R., Neuwald, J. L., Mizoguchi, B., Iverson, J. B., Riley, J. L., and Litzgus, J. D. (2019). Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Scientific Reports 9, 4254. https://doi.org/10.1038/s41598-019-40597-4 Google Scholar

343.

Van Dyke, J. U., Griffith, O. W., and Thompson, M. B. (2014). High food abundance permits the evolution of placentotrophy: evidence from a placental lizard, Pseudemoia entrecasteauxii. American Naturalist 184, 198–210. https://doi.org/10.1086/677138 Google Scholar

344.

Van Dyke, J. U., Lindsay, L. A., Murphy, C. R., and Thompson, M. B. (2015). Carbonic anhydrase II is found in the placenta of a viviparous, matrotrophic lizard and likely facilitates embryo–maternal CO2 transport. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 324, 636–646. https://doi.org/10.1002/jez.b.22621 Google Scholar

346.

Vicoso, B., Kaiser, V. B., and Bachtrog, D. (2013). Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proceedings of the National Academy of Sciences of the United States of America 110, 6453–6458. https://doi.org/10.1073/pnas.1217027110 Google Scholar

347.

Viets, B. E., Tousignant, A., Ewert, M. A., Nelson, C. E., and Crews, D. (1993). Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. The Journal of Experimental Zoology 265, 679–683. https://doi.org/10.1002/jez.1402650610 Google Scholar

348.

Vitt, L. J., and Pianka, E. R. (1994). ‘Lizard Ecology: Historical and Experimental Perspectives.’ (Princeton University Press: Princeton, NJ.) Google Scholar

351.

Wang, C., Tang, X., Xin, Y., Yue, F., Yan, X., Liu, B., An, B., Wang, X., and Chen, Q. (2015). Identification of sex chromosomes by means of comparative genomic hybridization in a lizard, Eremias multiocellata. Zoological Science 32, 151–156. https://doi.org/10.2108/zs130246 Google Scholar

352.

Wapstra, E., and Olsson, M. (2014). The evolution of polyandry and patterns of multiple paternity in lizards. In‘Reproductive Biology and Phylogeny of Lizards and Tuatara’. (Eds J. L. Rheubert, D. S. Siegel, and S. E. Trauth.) pp. 576–601. (CRC Press: Boca Raton, FL, USA.) Google Scholar

355.

Wapstra, E., Swain, R., Jones, S. M., and O'Reilly, J. (1999). Geographic and annual variation in reproductive cycles in the Tasmanian spotted snow skink, Niveoscincus ocellatus (Squamata: Scincidae). Australian Journal of Zoology 47, 539–550. https://doi.org/10.1071/zo99038 Google Scholar

357.

Wapstra, E., Olsson, M., Shine, R., Edwards, A., Swain, R., and Joss, J. M. (2004). Maternal basking behaviour determines offspring sex in a viviparous reptile. Biology Letters 271, S230–S232. Google Scholar

358.

Wapstra, E., Uller, T., Sinn, D. L., Olsson, M., Mazurek, K., Joss, J., and Shine, R. (2009). Climate effects on offspring sex ratio in a viviparous lizard. Journal of Animal Ecology 78, 84–90. https://doi.org/10.1111/j.1365-2656.2008.01470.x Google Scholar

362.

Warner, D. A., Woo, K. L., Van Dyk, D. A., Evans, C. S., and Shine, R. (2010). Egg incubation temperature affects male reproductive success but not display behaviors in lizards. Behavioral Ecology and Sociobiology 64, 803–813. https://doi.org/10.1007/s00265-009-0897-0 Google Scholar

363.

Watson, G., Green, D., and Watson, J. (2019). Observations supporting parental care by a viviparous reptile: aggressive behaviour against predators demonstrated by Cunningham's skinks. Australian Journal of Zoology 67, 180–183. https://doi.org/10.1071/zo20024 Google Scholar

373.

While, G. M., Uller, T., Bordogna, G., and Wapstra, E. (2014). Promiscuity resolves constraints on social mate choice imposed by population viscosity. Molecular Ecology 23, 721–732. https://doi.org/10.1111/mec.12618 Google Scholar

374.

While, G. M., Gardner, M., Chapple, D. G., and Whiting, M. J. (2019). Stable social grouping in lizards. In‘Evolutionary and Mechanistic Perspectives’. (Eds A. Russel, and V. Bells.) pp. 321–343. (CRC Press: New Hampshire, USA.) Google Scholar

375.

Whiteley, S. L., Holleley, C. E., Ruscoe, W. A., Castelli, M., Whitehead, D. L., Lei, J., Georges, A., and Weisbecker, V. (2017). Sex determination mode does not affect body or genital development of the central bearded dragon (Pogona vitticeps). EvoDevo 8, 25. https://doi.org/10.1186/s13227-017-0087-5 Google Scholar

376.

Whiteley, S. L., Weisbecker, V., Georges, A., Gauthier, A. R. G., Whitehead, D. L., and Holleley, C. E. (2018). Developmental asynchrony and antagonism of sex determination pathways in a lizard with temperature-induced sex reversal. Scientific Reports 8, 14892. https://doi.org/10.1038/s41598-018-33170-y Google Scholar

377.

Whiteley, S. L., Castelli, M. A., Dissanayake, D. S. B., Holleley, C. E., and Georges, A (2021a). Temperature induced sex reversal in reptiles: prevalence, discovery, and evolutionary implications. Sexual Development. https://doi.org/10.1159/000515687 Google Scholar

378.

Whiteley, S. L., Georges, A., Weisbecker, V., Schwanz, L. E., and Holleley, C. E. (2021b). Ovotestes suggest cryptic genetic influence in a reptile model for temperature-dependent sex determination. Proceedings of the Royal Society B: Biological Sciences 288, 20202819. https://doi.org/10.1098/rspb.2020.2819 Google Scholar

379.

Whiteley, S. L., Holleley, C. E., Wagner, S., Blackburn, J., Deveson, I. W., Graves, J. A. M., and Georges, A (2021c). Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLOS Genetics 17, e1009465. https://doi.org/10.1371/journal.pgen.1009465 Google Scholar

380.

Whiting, M., and While, G. M. (2017). Sociality in lizards. In‘Comparative Social Evolution’. (Eds D. R. Rubenstein, and P. Abbot.) pp. 390–426. (Cambridge University Press: Cambridge.) Google Scholar

381.

Whittington, C. M., Grau, G. E., Murphy, C. R., and Thompson, M. B. (2015). Unusual angiogenic factor plays a role in lizard pregnancy but is not unique to viviparity. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 324, 152–158. https://doi.org/10.1002/jez.b.22615 Google Scholar

382.

Wiggins, J. M., Santoyo-Brito, E., Scales, J. B., and Fox, S. F. (2020). Gene dose indicates presence of sex chromosomes in collared lizards (Crotaphytus collaris), a species with temperature-influenced sex determination. Herpetologica 76, 27–30. https://doi.org/10.1655/herpetologicad-19-00036 Google Scholar

383.

Wilson, S., and Swan, G. (2021). ‘A Complete Guide to Reptiles of Australia.’ 6th edn. (Reed New Holland: Wahroonga, NSW.) Google Scholar

384.

Wu, Q., Thompson, M. B., and Murphy, C. R. (2011). Changing distribution of cadherins during gestation in the uterine epithelium of lizards. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 316B, 440–450. https://doi.org/10.1002/jez.b.21419 Google Scholar

385.

Wyatt, T. D. (2010). Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 196, 685–700. https://doi.org/10.1007/s00359-010-0564-y Google Scholar

391.

Young, R., Ferkin, M., Ockendon-Powell, N., Orr, V., Phelps, S., Pogány, Á., Richards-Zawacki, C., Summers, K., Székely, T., Trainor, B., Zachar, G., O'Connell, L., and Hofmann, H. (2019). Conserved transcriptomic profiles underpin monogamy across vertebrates. Proceedings of the National Academy of Sciences of the United States of America 116, 1331–1336. https://doi.org/10.1073/pnas.1813775116 Google Scholar

392.

Zamudio, K. R., and Sinervo, B. (2000). Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies. Proceedings of the National Academy of Sciences of the United States of America 97, 14427–14432. https://doi.org/10.1073/pnas.011544998 Google Scholar

394.

Ziegler, T., Schmitz, A., Koch, A., and Böhme, W. (2007). A review of the subgenus Euprepiosaurus of Varanus (Squamata: Varanidae): morphological and molecular phylogeny, distribution and zoogeography, with an identification key for the members of the V. indicus and the V. prasinus species groups. Zootaxa 1472, 1. https://doi.org/10.11646/zootaxa.1472.1.1 Google Scholar