Which of the following may cause a falsely high blood pressure reading in a client?

1. Jones D, Drennan K, Hart GK, Bellomo R, Web SAR. ANZICS-CORE MET Dose Investigators. Rapid Response Team composition, resourcing and calling criteria in Australia. Resuscitation 2012; 83:563–567. [PubMed] [Google Scholar]

2. Hollenberg S, Ahrens T, Annane D, Astiz M, Chalfin D, Dasta J, et al. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med 2004; 32:1928–1948. [PubMed] [Google Scholar]

3. Holley A, Lukin W, Paratz J, Hawkins T, Boots R, Lipman J. Review article: Part one: Goal-directed resuscitation – which goals? Haemodynamic targets. Emerg Med Australas 2012; 24:14–22. [PubMed] [Google Scholar]

4. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 2005; 45:142–161. [PubMed] [Google Scholar]

5. Williams B, Poulter NR, Brown MJ, Davis M, McInnes GT, Potter JF, et al. Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004 – BHS IV. J Human Hypertens 2004; 18:139–185. [PubMed] [Google Scholar]

6. National Heart Foundation of Australia. Guide to management of hypertension 2008. Melbourne, Victoria: National Heart Foundation of Australia; 2008. [Google Scholar]

7. Ray G, Nawarskas J, Anderson J. Blood pressure monitoring technique impacts hypertension treatment. J Gen Intern Med 2012; 27:623–629. [PMC free article] [PubMed] [Google Scholar]

8. Campbell NRC, Conradson HE, Kang J, Brant R, Anderson T. Automated assessment of blood pressure using BpTRU compared with assessments by a trained technician and a clinic nurse. Blood Press Monit 2005; 10:257–262. [PubMed] [Google Scholar]

9. Sebo P, Pechère-Bertschi A, Herrmann F, Haller D, Bovier P. Blood pressure measurements are unreliable to diagnose hypertension in primary care. J Hypertens 2014; 32:509–517. [PubMed] [Google Scholar]

11. McAlister FA, Straus SE. Evidence based treatment of hypertension: measurement of blood pressure: an evidence based review. BMJ 2001; 322:908–911. [PMC free article] [PubMed] [Google Scholar]

12. Baker RH, Ende J. Confounders of auscultatory blood pressure measurement. J Gen Intern Med 1995; 10:223–231. [PubMed] [Google Scholar]

13. Reeves RA. Does this patient have hypertension? How to measure blood pressure. JAMA 1995; 273:1211–1218. [PubMed] [Google Scholar]

14. Bailey RH, Bauer JH. A review of common errors in the indirect measurement of blood pressure: sphygmomanometry. Arch Intern Med 1993; 153:2741–2748. [PubMed] [Google Scholar]

15. Kmet LM, Lee RC, Cook LS. Standard quality assessment criteria for evaluating primary research papers from a variety of fields. Edmonton: Alberta Heritage Foundation for Medical Research; 2004. [Google Scholar]

16. Ahuja KD, Robertson IK, Ball MJ. Acute effects of food on postprandial blood pressure and measures of arterial stiffness in healthy humans. Am J Clin Nutr 2009; 90:298–303. doi:10.3945/ajcn.2009.27771. [PubMed] [Google Scholar]

17. Taylor JL, Curry TB, Matzek LJ, Joyner MJ, Casey DP. Acute effects of a mixed meal on arterial stiffness and central hemodynamics in healthy adults. Am J Hypertens 2014; 27:331–337. [PMC free article] [PubMed] [Google Scholar]

18. Barden A, Croft K, Beilin L, Phillips M, Ledowski T, Puddey I. Acute effects of red wine on cytochrome P450 eicosanoids and blood pressure in men. J Hypertens 2013; 31:2195–2202. [PubMed] [Google Scholar]

19. Carter JR, Stream SF, Durocher JJ, Larson RA. Influence of acute alcohol ingestion on sympathetic neural responses to orthostatic stress in humans. Am J Physiol Endocrinol Metab 2011; 300:E771–E778. [PMC free article] [PubMed] [Google Scholar]

20. Hering D, Kucharska W, Kara T, Somers V, Narkiewicz K. Potentiated sympathetic and hemodynamic responses to alcohol in hypertensive vs. normotensive individuals. J Hypertens 2011; 29:537–541. [PubMed] [Google Scholar]

21. Mahmud A, Feely J. Divergent effect of acute and chronic alcohol on arterial stiffness. Am J Hypertens 2002; 15:240–243. [PubMed] [Google Scholar]

22. Hashimoto M, Kim S, Eto M, Iijima K, Ako J, Yoshizumi M, et al. Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery. Am J Cardiol 2001; 88:1457. [PubMed] [Google Scholar]

23. Iwase S, Matsukawa T, Ishihara S, Tanaka A, Tanabe K, Danbara A, et al. Effect of oral ethanol intake on muscle sympathetic nerve activity and cardiovascular functions in humans. J Auton Nerv Syst 1995; 54:206–214. [PubMed] [Google Scholar]

24. McDougle CJ, Krystal JH, Price LH, Heninger GR, Charney DS. Noradrenergic response to acute ethanol administration in healthy subjects: comparison with intravenous yohimbine. Psychopharmacology 1995; 118:127–135. [PubMed] [Google Scholar]

25. Perkins KA, Sexton JE, DiMarco A, Grobe JE, Scierka A, Stiller RL. Subjective and cardiovascular responses to nicotine combined with alcohol in male and female smokers. Psychopharmacology 1995; 119:205–212. [PubMed] [Google Scholar]

26. Kojima S, Kawano Y, Abe H, Sanai T, Yoshida K, Imanishi M, et al. Acute effects of alcohol ingestion on blood pressure and erythrocyte sodium concentration. J Hypertens 1993; 11:185–190. [PubMed] [Google Scholar]

27. Kawano Y, Abe H, Kojima S, Ashida T, Yoshida K, Imanishi M, et al. Acute depressor effect of alcohol in patients with essential hypertension. Hypertension 1992; 20:219–226. [PubMed] [Google Scholar]

28. Potter JF, Beevers DG. Factors determining the acute pressor response to alcohol. Clin Exp Hypertens 1991; 13:13–34. [PubMed] [Google Scholar]

29. Grassi GM, Somers VK, Renk WS, Abboud FM, Mark AL. Effects of alcohol intake on blood pressure and sympathetic nerve activity in normotensive humans: a preliminary report. J Hypertens 1989; 7:S20–S21. [PubMed] [Google Scholar]

30. Carretta R, Fabris B, Bardelli M, Muiesan S, Fischetti F, Cesanelli R, et al. Acute effects of intravenous infusions of alcohol on baroreceptor sensitivity in essential hypertension. Cardiovasc Res 1988; 22:226–230. [PubMed] [Google Scholar]

31. Potter JF, Macdonald IA, Beevers DG. Alcohol raises blood pressure in hypertensive patients. J Hypertens 1986; 4:435–441. [PubMed] [Google Scholar]

32. Reed TE, Hanna JM. Between- and within-race variation in acute cardiovascular responses to alcohol: evidence for genetic determination in normal males in three races. Behav Genet 1986; 16:585–598. [PubMed] [Google Scholar]

33. Weise F, Krell D, Brinkhoff N. Acute alcohol ingestion reduces heart rate variability. Drug Alcohol Depend 1986; 17:89–91. [PubMed] [Google Scholar]

34. Kupari M. Acute cardiovascular effects of ethanol A controlled noninvasive study. Br Heart J 1983; 49:174–182. [PMC free article] [PubMed] [Google Scholar]

35. Delgado CE, Gortuin NJ, Ross RS. Acute effects of low doses of alcohol on left ventricular function by echocardiography. Circulation 1975; 51:535–540. [PubMed] [Google Scholar]

36. Mesas AE, Leon-Muñoz LM, Rodriguez-Artalejo F, Lopez-Garcia E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr 2011; 94:1113–1126. [PubMed] [Google Scholar]

37. Mort JR, Kruse HR. Timing of blood pressure measurement related to caffeine consumption. Ann Pharmacother 2008; 42:105–110. [PubMed] [Google Scholar]

38. James JE. Critical review of dietary caffeine and blood pressure: a relationship that should be taken more seriously. Psychosom Med 2004; 66:63–71. [PubMed] [Google Scholar]

39. Nurminen ML, Niittynen L, Korpela R, Vapaatalo H. Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr 1999; 53:831–839. [PubMed] [Google Scholar]

40. Grasser E, Yepuri G, Dulloo A, Montani J-P. Cardio- and cerebrovascular responses to the energy drink Red Bull in young adults: a randomized cross-over study. Eur J Nutr 2014; 53:1561–1571. [PMC free article] [PubMed] [Google Scholar]

41. Buscemi S, Mattina A, Tranchina MR, Verga S. Acute effects of coffee on QT interval in healthy subjects. Nutr J 2011; 10:15–115. [PMC free article] [PubMed] [Google Scholar]

42. McMullen MK, Whitehouse JM, Shine G, Towell A. Habitual coffee and tea drinkers experienced increases in blood pressure after consuming low to moderate doses of caffeine; these increases were larger upright than in the supine posture. Food Funct 2011; 2:197–203. [PubMed] [Google Scholar]

43. Buscemi S, Verga S, Batsis JA, Donatelli M, Tranchina MR, Belmonte S, et al. Acute effects of coffee on endothelial function in healthy subjects. Eur J Clin Nutr 2010; 64:483–489. [PubMed] [Google Scholar]

44. Arciero PJ, Ormsbee MJ. Relationship of blood pressure, behavioral mood state, and physical activity following caffeine ingestion in younger and older women. Appl Physiol Nutr Metab Physiol 2009; 34:754–762. [PubMed] [Google Scholar]

45. Ozkan B, Yüksel N, Anik Y, Altintas O, Demirci A, Cağlar Y. The effect of caffeine on retrobulbar hemodynamics. Curr Eye Res 2008; 33:804–809. [PubMed] [Google Scholar]

46. Hodgson JM, Burke V, Puddey IB. Acute effects of tea on fasting and postprandial vascular function and blood pressure in humans. J Hypertens 2005; 23:47–54. [PubMed] [Google Scholar]

47. Karatzis E, Papaioannou TG, Aznaouridis K, Karatzi K, Stamatelopoulos K, Zampelas A, et al. Acute effects of caffeine on blood pressure and wave reflections in healthy subjects: should we consider monitoring central blood pressure? Int J Cardiol 2005; 98:425–430. [PubMed] [Google Scholar]

48. Vlachopoulos C, Hirata K, Stefanadis C, Toutouzas P, O’Rourke M. OR-12: caffeine increases aortic stiffness in hypertensive patients. Am J Hypertens 2002; 15:5A–6A. [Google Scholar]

49. Watson J, Deary I, Kerr D. Central and peripheral effects of sustained caffeine use: tolerance is incomplete. Br J Clin Pharmacol 2002; 54:400–406. [PMC free article] [PubMed] [Google Scholar]

50. Mahmud A, Feely J. Acute effect of caffeine on arterial stiffness and aortic pressure waveform. Hypertension 2001; 38:227–231. [PubMed] [Google Scholar]

51. Shepard JD, al’Absi M, Whitsett TL, Passey RB, Lovallo WR. Additive pressor effects of caffeine and stress in male medical students at risk for hypertension. Am J Hypertens 2000; 13:475–481. [PubMed] [Google Scholar]

52. Hodgson J, Puddey I, Burke V, Beilin L, Jordan N. Effects on blood pressure of drinking green and black tea. J Hypertens 1999; 17:457–463. [PubMed] [Google Scholar]

53. Bender AM, Donnerstein RL, Samson RA, Zhu D, Goldberg SJ. Hemodynamic effects of acute caffeine ingestion in young adults. Am J Cardiol 1997; 79:696–699. [PubMed] [Google Scholar]

54. Lovallo WR, alʼAbsi M, McKey BS, Pincomb GA, Everson SA, Sung BH, et al. Caffeine and behavioral stress effects on blood pressure in borderline hypertensive Caucasian men. Health Psychol 1996; 15:11–17. [PubMed] [Google Scholar]

55. Pincomb GA, Lovallo WR, McKey BS, Sung BH, Passey RB, Everson SA, et al. Acute blood pressure elevations with caffeine in men with borderline systemic hypertension. Am J Cardiol 1996; 77:270–274. [PubMed] [Google Scholar]

56. Hasenfratz M, Bättig K. Acute dose-effect relationships of caffeine and mental performance, EEG, cardiovascular and subjective parameters. Psychopharmacology 1994; 114:281–287. [PubMed] [Google Scholar]

57. Sung BH, Whitsett TL, Lovallo WR, al’Absi M, Pincomb GA, Wilson MF. Prolonged increase in blood pressure by a single oral dose of caffeine in mildly hypertensive men. Am J Hypertens 1994; 7:755–758. [PubMed] [Google Scholar]

58. Haigh RA, Harper GD, Fotherby M, Hurd J, Macdonald IA, Potter JF. Duration of caffeine abstention influences the acute blood pressure responses to caffeine in elderly normotensives. Eur J Clin Pharmacol 1993; 44:549–553. [PubMed] [Google Scholar]

59. Casiglia E, Bongiovì S, Paleari CD, Petucco S, Boni M, Colangeli G, et al. Haemodynamic effects of coffee and caffeine in normal volunteers: a placebo-controlled clinical study. J Intern Med 1991; 229:501–504. [PubMed] [Google Scholar]

60. Pincomb GA, Wilson MF, Sung BH, Passey RB, Lovallo WR. Effects of caffeine on pressor regulation during rest and exercise in men at risk for hypertension. Am Heart J 1991; 122:1107–1115. [PubMed] [Google Scholar]

61. Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J. Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 1990; 51:759–767. [PubMed] [Google Scholar]

62. Lane JD, Adcock RA, Williams RB, Kuhn CM. Caffeine effects on cardiovascular and neuroendocrine responses to acute psychosocial stress and their relationship to level of habitual caffeine consumption. Psychosom Med 1990; 52:320–336. [PubMed] [Google Scholar]

63. Nussberger J, Mooser V, Maridor G, Juillerat L, Waeber B, Brunner HR. Caffeine-induced diuresis and atrial natriuretic peptides. J Cardiovasc Pharmacol 1990; 15:685–691. [PubMed] [Google Scholar]

64. Lovallo WR, Pincomb GA, Sung BH, Passey RB, Sausen KP, Wilson MF. Caffeine may potentiate adrenocortical stress responses in hypertension-prone men. Hypertension 1989; 14:170–176. [PubMed] [Google Scholar]

65. Pincomb GA, Lovallo WR, Passey RB, Wilson MF. Effect of behavior state on caffeine's ability to alter blood pressure. Am J Cardiol 1988; 61:798–802. [PubMed] [Google Scholar]

66. Prakash R, Kaushik VS. Acute effect of decaffeinated coffee on heart rate, blood pressure, and exercise performance in healthy subjects. J Natl Med Assoc 1988; 80:71–74. [PMC free article] [PubMed] [Google Scholar]

67. Lane JD, Williams RB. Cardiovascular effects of caffeine and stress in regular coffee drinkers. Psychophysiology 1987; 24:157–164. [PubMed] [Google Scholar]

68. Myers MG, Harris L, Leenen FH, Grant DM. Caffeine as a possible cause of ventricular arrhythmias during the healing phase of acute myocardial infarction. Am J Cardiol 1987; 59:1024–1028. [PubMed] [Google Scholar]

69. Passmore AP, Kondowe GB, Johnston GD. Renal and cardiovascular effects of caffeine: a dose-response study. Clin Sci (Lond) 1987; 72:749. [PubMed] [Google Scholar]

70. Ray RL, Nellis MJ, Brady JV, Foltin RW. Nicotine and caffeine effects on the task-elicited blood pressure response. Addict Behav 1986; 11:31–36. [PubMed] [Google Scholar]

71. Lane JD, Williams RB. Caffeine affects cardiovascular responses to stress. Psychophysiology 1985; 22:648–655. [PubMed] [Google Scholar]

72. Piters KM, Colombo A, Olson HG, Butman SM. Effect of coffee on exercise-induced angina pectoris due to coronary artery disease in habitual coffee drinkers. Am J Cardiol 1985; 55:277–280. [PubMed] [Google Scholar]

73. Lane JD. Caffeine and cardiovascular responses to stress. Psychosom Med 1983; 45:447. [PubMed] [Google Scholar]

74. Robertson D, Frolich JC, Carr RK, Watson JT, Hollifield JW, Shand DG, et al. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. Surv Anesthesiol 1978; 22:548–549. [Google Scholar]

75. Farsalinos KE, Tsiapras D, Kyrzopoulos S, Savvopoulou M, Voudris V. Acute effects of using an electronic nicotine-delivery device (electronic cigarette) on myocardial function: comparison with the effects of regular cigarettes. BMC Cardiovasc Disord 2014; 14:78–178. [PMC free article] [PubMed] [Google Scholar]

76. Seet RCS, Loke WM, Khoo CM, Chew SE, Chong WL, Quek AML, et al. Acute effects of cigarette smoking on insulin resistance and arterial stiffness in young adults. Atherosclerosis 2012; 224:195–200. [PubMed] [Google Scholar]

77. Shaikh RB, Abdul Haque NM, Abdul Hadi Khalil Al Mohsen H, Abdul Hadi Khalil Al Mohsen A, Haitham Khalaf Humadi M, Zaki Al Mubarak Z, et al. Acute effects of dokha smoking on the cardiovascular and respiratory systems among UAE male university students. Asian Pac J Cancer Prev 2012; 13:1819–1822. [PubMed] [Google Scholar]

78. Kubozono T, Miyata M, Ueyama K, Hamasaki S, Kusano K, Kubozono O, et al. Acute and chronic effects of smoking on arterial stiffness. Circ J 2011; 75:698–702. [PubMed] [Google Scholar]

79. Kasikcioglu E, Elitok A, Onur I, Cimen A, Ucar A, Oflaz H. Acute effects of smoking on coronary flow velocity reserve and ventricular diastolic functions. Int J Cardiol 2008; 129:e18–e20. [PubMed] [Google Scholar]

80. Rhee M-Y, Na S-H, Kim Y-K, Lee M-M, Kim H-Y. Acute effects of cigarette smoking on arterial stiffness and blood pressure in male smokers with hypertension. Am J Hypertens 2007; 20:637–641. [PubMed] [Google Scholar]

81. Zamir Z, Mahmud A, Feely J. Acute haemodynamic effects of cigarette smoking in healthy young subjects. Ir J Med Sci 2006; 175:20–23. [PubMed] [Google Scholar]

82. Najem B, Houssière A, Pathak A, Janssen C, Lemogoum D, Xhaët O, et al. Acute cardiovascular and sympathetic effects of nicotine replacement therapy. Hypertension 2006; 47:1162–1167. [PubMed] [Google Scholar]

83. Vanderkaay MM, Patterson SM. Nicotine and acute stress: effects of nicotine versus nicotine withdrawal on stress-induced hemoconcentration and cardiovascular reactivity. Biol Psychol 2006; 71:191–201. [PubMed] [Google Scholar]

84. Wolk R, Shamsuzzaman ASM, Svatikova A, Huyber CM, Huck C, Narkiewicz K, et al. Hemodynamic and autonomic effects of smokeless tobacco in healthy young men. J Am Coll Cardiol 2005; 45:910–914. [PubMed] [Google Scholar]

85. Vlachopoulos C, Alexopoulos N, Panagiotakos D, O’Rourke MF, Stefanadis C. Cigar smoking has an acute detrimental effect on arterial stiffness. Am J Hypertens 2004; 17:299–303. [PubMed] [Google Scholar]

86. Ijzerman RG, Serne EH, van Weissenbruch MM, de Jongh RT, Stehouwer CDA. Cigarette smoking is associated with an acute impairment of microvascular function in humans. Clin Sci (Lond) 2003; 104:247–252. [PubMed] [Google Scholar]

87. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure amplification. Hypertension 2003; 41:183–187. [PubMed] [Google Scholar]

88. Malson JL, Pickworth WB. Bidis – hand-rolled, Indian cigarettes: effects on physiological, biochemical and subjective measures. Pharmacol Biochem Behav 2002; 72:443–447. [PubMed] [Google Scholar]

89. Halimi JM, Mimran A. Systemic and renal effect of nicotine in nonsmokers: influence of vitamin C. J Hypertens 2000; 18:1665–1669. [PubMed] [Google Scholar]

90. Freestone S, Yeo WW, Ramsay LE. Effect of coffee and cigarette smoking on the blood pressure of patients with accelerated (malignant) hypertension. J Hum Hypertens 1995; 9:89. [PubMed] [Google Scholar]

91. Efstratopoulos AD, Voyaki SM. Effect of antioxidants on acute blood pressure response to smoking in normotensives and hypertensives. J Hypertens 1993; 11:S112–S113. [PubMed] [Google Scholar]

92. Kool MJ, Hoeks AP, Struijker Boudier HA, Reneman RS, Van Bortel LM. Short- and long-term effects of smoking on arterial wall properties in habitual smokers. J Am Coll Cardiol 1993; 22:1881–1886. [PubMed] [Google Scholar]

93. Brunel P, Girerd X, Laurent S, Pannier B, Safar M. Acute changes in forearm haemodynamics produced by cigarette smoking in healthy normotensive nonsmokers are not influenced by propranolol or pindolol. Eur J Clin Pharmacol 1992; 42:143–146. [PubMed] [Google Scholar]

94. Groppelli A, Giorgi D, Omboni S, Parati G, Mancia G. Persistent blood pressure increase induced by heavy smoking. J Hypertens 1992; 10:495–499. [PubMed] [Google Scholar]

95. Kyriakides ZS, Kremastinos DT, Rentoukas E, Mavrogheni S, Kremastinos DI, Toutouzas P. Acute effects of cigarette smoking on left ventricular diastolic function. Eur Heart J 1992; 13:743–748. [PubMed] [Google Scholar]

96. Benowitz NL, Kuyt F, Jacob P., 3rd Influence of nicotine on cardiovascular and hormonal effects of cigarette smoking. Clin Pharmacol Ther 1984; 36:74. [PubMed] [Google Scholar]

97. Pijpers L, Wladimiroff JW, McGhie JS, Bom N. Acute effect of maternal smoking on the maternal and fetal cardiovascular system. Early Hum Dev 1984; 10:95–105. [PubMed] [Google Scholar]

98. Rabinowitz BD, Thorp K, Huber GL, Abelmann WH. Acute hemodynamic effects of cigarette smoking in man assessed by systolic time intervals and echocardiography. Circulation 1979; 60:752–760. [PubMed] [Google Scholar]

99. Diamond L, Lipscomb W, Johnson R. Acute pulmonary effects of smoking a reference cigarette. Toxicol Appl Pharmacol 1971; 18:638–648. [PubMed] [Google Scholar]

100. Yarlioglues M, Kaya M, Ardic I, Calapkorur B, Dogdu O, Akpek M, et al. Acute effects of passive smoking on blood pressure and heart rate in healthy females. Blood Press Monit 2010; 15:251–256. [PubMed] [Google Scholar]

101. Argacha J-F, Adamopoulos D, Gujic M, Fontaine D, Amyai N, Berkenboom G, et al. Acute effects of passive smoking on peripheral vascular function. Hypertension 2008; 51:1506–1511. [PubMed] [Google Scholar]

102. Flouris AD, Metsios GS, Jamurtas AZ, Koutedakis Y. Sexual dimorphism in the acute effects of secondhand smoke on thyroid hormone secretion, inflammatory markers and vascular function. Am J Physiol Endocrinol Metab 2008; 294:E456–E462. [PubMed] [Google Scholar]

103. Mahmud A, Feely J. Effects of passive smoking on blood pressure and aortic pressure waveform in healthy young adults – influence of gender. Br J Clin Pharmacol 2004; 57:37–43. [PMC free article] [PubMed] [Google Scholar]

104. Choi EJ, Jeong DW, Lee JG, Lee S, Kim YJ, Yi YH, et al. The impact of bladder distension on blood pressure in middle aged women. Korean J Fam Med 2011; 32:306–310. [PMC free article] [PubMed] [Google Scholar]

105. Fagius J, Karhuvaara S. Sympathetic activity and blood pressure increases with bladder distension in humans. Hypertension 1989; 14:511–517. [PubMed] [Google Scholar]

106. Scultéty S, Varga B, Szabó D. Effect of bladder distension on blood pressure. Int Urol Nephrol 1971; 3:11–19. [PubMed] [Google Scholar]

107. Greaney JL, Stanhewicz AE, Kenney WL, Alexander LM. Muscle sympathetic nerve activity during cold stress and isometric exercise in healthy older adults. J Appl Physiol 2014; 117:648–657. [PMC free article] [PubMed] [Google Scholar]

108. Hintsala H, Kandelberg A, Herzig K-H, Rintamäki H, Mäntysaari M, Rantala A, et al. Central aortic blood pressure of hypertensive men during short-term cold exposure. Am J Hypertens 2014; 27:656–664. [PubMed] [Google Scholar]

109. Koutnik AP, Figueroa A, Wong A, Ramirez KJ, Ormsbee MJ, Sanchez-Gonzalez MA. Impact of acute whole-body cold exposure with concurrent isometric handgrip exercise on aortic pressure waveform characteristics. Eur J Appl Physiol 2014; 114:1779–1787. [PubMed] [Google Scholar]

110. Zhang X, Zhang S, Wang C, Wang B, Guo P. Effects of moderate strength cold air exposure on blood pressure and biochemical indicators among cardiovascular and cerebrovascular patients. Int J Environ Res Public Health 2014; 11:2472–2487. [PMC free article] [PubMed] [Google Scholar]

111. Korhonen I. Blood pressure and heart rate responses in men exposed to arm and leg cold pressor tests and whole-body cold exposure. Int J Circumpolar Health 2006; 65:178–184. [PubMed] [Google Scholar]

112. Komulainen S, Rintamäki H, Virokannas H, Keinänen-Kiukaanniemi S. Blood pressure responses to whole-body cold exposure: effect of metoprolol. J Hum Hypertens 2004; 18:905–906. [PubMed] [Google Scholar]

113. Komulainen S, Tähtinen T, Rintamäki H, Virokannas H, Keinänen-Kiukaanniemi S. Blood pressure responses to whole-body cold exposure: effect of carvedilol. Eur J Clin Pharmacol 2000; 56:637–642. [PubMed] [Google Scholar]

114. Kawahara J, Sano H, Fukuzaki H, Saito K, Hirouchi H. Acute effects of exposure to cold on blood pressure, platelet function and sympathetic nervous activity in humans. Am J Hypertens 1989; 2:724–726. [PubMed] [Google Scholar]

115. Scriven AJ, Brown MJ, Murphy MB, Dollery CT. Changes in blood pressure and plasma catecholamines caused by tyramine and cold exposure. J Cardiovasc Pharmacol 1984; 6:954–960. [PubMed] [Google Scholar]

116. Dewar R, Sykes D, Mulkerrin E, Nicklason F, Thomas D, Seymour R. The effect of hemiplegia on blood pressure measurement in the elderly. Postgrad Med J 1992; 68:888–891. [PMC free article] [PubMed] [Google Scholar]

117. Yagi S, Ichikawa S, Sakamaki T, Takayama Y, Murata K. Blood pressure in the paretic arms of patients with stroke. N Engl J Med 1986; 315:836–1836. [PubMed] [Google Scholar]

118. Ishikawa J, Ishikawa Y, Edmondson D, Pickering TG, Schwartz JE. Age and the difference between awake ambulatory blood pressure and office blood pressure: a meta-analysis. Blood Press Monit 2011; 16:159–167. [PMC free article] [PubMed] [Google Scholar]

119. Agyemang C, Bhopal R, Bruijnzeels M, Redekop WK. Does the white-coat effect in people of African and South Asian descent differ from that in White people of European origin? A systematic review and meta-analysis. Blood Press Monit 2005; 10:243–248. [PubMed] [Google Scholar]

120. Schmieder RE, Schmidt ST, Riemer T, Dechend R, Hagedorn I, Senges J, et al. Disproportional decrease in office blood pressure compared with 24-h ambulatory blood pressure with antihypertensive treatment: dependency on pretreatment blood pressure levels. Hypertension 2014; 64:1067–1072. [PubMed] [Google Scholar]

121. Agarwal R, Weir MR. Treated hypertension and the white coat phenomenon: office readings are inadequate measures of efficacy. J Am Soc Hypertens JASH 2013; 7:236–243. [PubMed] [Google Scholar]

122. Saladini F, Benetti E, Malipiero G, Casiglia E, Palatini P. Does home blood pressure allow for a better assessment of the white-coat effect than ambulatory blood pressure? J Hypertens 2012; 30:2118–2124. [PubMed] [Google Scholar]

123. Yoon HJ, Ahn Y, Kim KH, Park JC, Park JB, Park CG, et al. Can pulse pressure predict the white-coat effect in treated hypertensive patients? Clin Exp Hypertens 2012; 34:555–560. [PubMed] [Google Scholar]

124. O'Shaughnessy MM, Newman CA, Kinsella SM, Reddan DN, Lappin DW. In-office assessment of blood pressure in chronic kidney disease: usual measurement versus automated BpTRU measurement. Blood Press Monit 2011; 16:124–128. [PubMed] [Google Scholar]

125. Sabater-Hernández D, de la Sierra A, Sánchez-Villegas P, Baena MI, Amariles P, Faus MJ. Magnitude of the white-coat effect in the community pharmacy setting: the MEPAFAR study. Am J Hypertens 2011; 24:887–892. [PubMed] [Google Scholar]

126. Scherpbier-de Haan N, van der Wel M, Schoenmakers G, Boudewijns S, Peer P, van Weel C, et al. Thirty-minute compared to standardised office blood pressure measurement in general practice. Br J Gen Pract 2011; 61:e590–e597. [PMC free article] [PubMed] [Google Scholar]

127. Sendra-Lillo J, Sabater-Hernández D, Sendra-Ortolá A, Martínez-Martínez F. Comparison of the white-coat effect in community pharmacy versus the physician's office: the Palmera study. Blood Press Monit 2011; 16:62–66. [PubMed] [Google Scholar]

128. Pierdomenico SD, Pannarale G, Rabbia F, Lapenna D, Licitra R, Zito M, et al. Prognostic relevance of masked hypertension in subjects with prehypertension. Am J Hypertens 2008; 21:879–883. [PubMed] [Google Scholar]

129. Blanco F, Gil P, Arco C del, Sáez T, Aguilar R, Lara I, et al. Association of clinic and ambulatory blood pressure with vascular damage in the elderly: the EPICARDIAN study. Blood Press Monit 2006; 11:329–335. [PubMed] [Google Scholar]

130. Gerin W, Ogedegbe G, Schwartz JE, Chaplin WF, Goyal T, Clemow L, et al. Assessment of the white-coat effect. J Hypertens 2006; 24:67–74. [PubMed] [Google Scholar]

131. Niiranen TJ, Jula AM, Kantola IM, Reunanen A. Comparison of agreement between clinic and home-measured blood pressure in the Finnish population: the Finn-HOME Study. J Hypertens 2006; 24:1549–1555. [PubMed] [Google Scholar]

132. Botomino A, Martina B, Ruf D, Bruppacher R, Hersberger KE. White coat effect and white coat hypertension in community pharmacy practice. Blood Press Monit 2005; 10:13–18. [PubMed] [Google Scholar]

133. Goldstein IB, Ancoli-Israel S, Shapiro D. Relationship between daytime sleepiness and blood pressure in healthy older adults. Am J Hypertens 2004; 17:787–792. [PubMed] [Google Scholar]

134. Stergiou GS, Efstathiou SP, Argyraki CK, Roussias LG, Mountokalakis TD. White coat effect in treated versus untreated hypertensive individuals: a case-control study using ambulatory and home blood pressure monitoring. Am J Hypertens 2004; 17:124–128. [PubMed] [Google Scholar]

135. Tachibana R, Tabara Y, Kondo I, Miki T, Kohara K. Home blood pressure is a better predictor of carotid atherosclerosis than office blood pressure in community-dwelling subjects. Hypertens Res 2004; 27:633–639. [PubMed] [Google Scholar]

136. Tsai P-S. Determinants of the white-coat effect in normotensives and never-treated mild hypertensives. Clin Exp Hypertens 2003; 25:443–454. [PubMed] [Google Scholar]

137. Jumabay M, Ozawa Y, Kawamura H, Saito S, Izumi Y, Mitsubayashi H, et al. Ambulatory blood pressure monitoring in uygur centenarians. Circ J 2002; 66:75–79. [PubMed] [Google Scholar]

138. Matsuoka S, Kawamura K, Honda M, Awazu M. White coat effect and white coat hypertension in pediatric patients. Pediatr Nephrol Berl Ger 2002; 17:950–953. [PubMed] [Google Scholar]

139. Munakata M, Saito Y, Nunokawa T, Ito N, Fukudo S, Yoshinaga K. Clinical significance of blood pressure response triggered by a doctor's visit in patients with essential hypertension. Hypertens Res 2002; 25:343–349. [PubMed] [Google Scholar]

140. Silveira A, Mesquita A, Maldonado J, Silva JA, Polónia J. White coat effect in treated and untreated patients with high office blood pressure. Relationship with pulse wave velocity and left ventricular mass index. Port J Cardiol 2002; 21:517–530. [PubMed] [Google Scholar]

141. Steffen PR, Hinderliter AL, Blumenthal JA, Sherwood A. Religious coping, ethnicity, and ambulatory blood pressure. Psychosom Med 2001; 63:523–530. [PubMed] [Google Scholar]

142. Björklund K, Lind L, Lithell H. Twenty-four hour ambulatory blood pressure in a population of elderly men. J Intern Med 2000; 248:501–510. [PubMed] [Google Scholar]

143. Guzzetti S, Mayet J, Shahi M, Mezzetti S, Foale RA, Sever PS, et al. Absence of sympathetic overactivity in Afro-Caribbean hypertensive subjects studied by heart rate variability. J Hum Hypertens 2000; 14:337–342. [PubMed] [Google Scholar]

144. Khattar R, Swales J, Senior R, Lahiri A. Racial variation in cardiovascular morbidity and mortality in essential hypertension. Heart 2000; 83:267–271. [PMC free article] [PubMed] [Google Scholar]

145. Kuznetsova T, Malyutina S, Pello E, Thijs L, Nikitin Y, Staessen JA. Ambulatory blood pressure of adults in Novosibirsk, Russia: interim report on a population study. Blood Press Monit 2000; 5:291–296. [PubMed] [Google Scholar]

146. Schettini C, Bianchi M, Nieto F, Sandoya E, Senra H. Group THW. Ambulatory blood pressure: normality and comparison with other measurements. Hypertension 1999; 34:818–825. [PubMed] [Google Scholar]

147. Stergiou GS, Thomopoulou GC, Skeva II, Mountokalakis TD. Home blood pressure normalcy: The Didima study. Am J Hypertens 2000; 13:678–685. [PubMed] [Google Scholar]

148. Lambrechtsen J, Rasmussen F, Hansen HS, Jacobsen HS. Ambulatory blood pressure in 570 Danes aged 19–21 years: the Odense Schoolchild Study. J Human Hypertens 1998; 12:755–760. [PubMed] [Google Scholar]

149. Mayet J, Chapman N, Li CK-C, Shahi M, Poulter NR, Sever PS, et al. Ethnic differences in the hypertensive heart and 24-hour blood pressure profile. Hypertension 1998; 31:1190–1194. [PubMed] [Google Scholar]

150. Chase HP, Garg SK, Icaza G, Carmain JA, Walravens CF, Marshall G. 24-h Ambulatory blood pressure monitoring in healthy young adult Anglo, Hispanic, and African-American subjects. Am J Hypertens 1997; 10:18–23. [PubMed] [Google Scholar]

151. Sega R, Cesana G, Milesi C, Grassi G, Zanchetti A, Mancia G. Ambulatory and home blood pressure normality in the elderly: data from the Pamela population. Hypertension 1997; 30:1–6. [PubMed] [Google Scholar]

152. Acharya DU, Heber ME, Doré CJ, Raftery EB. Ambulatory intraarterial blood pressure in essential hypertension effects of age, sex, race, and body mass – the Northwick Park Hospital Database Study. Am J Hypertens 1996; 9:943–952. [PubMed] [Google Scholar]

153. Nyström F, Malmström O, Karlberg BE, Öhman KP. Twenty-four hour ambulatory blood pressure in the population. J Intern Med 1996; 240:279–284. [PubMed] [Google Scholar]

154. Shapiro D, Goldstein IB, Jamner LD. Effects of cynical hostility, anger out, anxiety, and defensiveness on ambulatory blood pressure in black and white college students. Psychosom Med 1996; 58:354–364. [PubMed] [Google Scholar]

155. Mancia G, Sega R, Bravi C, Vito GD, Valagussa F, Cesana G, et al. Ambulatory blood pressure normality: results from the PAMELA study. J Hypertens 1995; 13:1377–1390. [PubMed] [Google Scholar]

156. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Zampi I, Gattobigio R, et al. White coat hypertension and white coat effect. Similarities and differences. Am J Hypertens 1995; 8:790–798. [PubMed] [Google Scholar]

157. Gretler DD, Fumo MT, Nelson KS, Murphy MB. Ethnic differences in circadian hemodynamic profile. Am J Hypertens 1994; 7:7–14. [PubMed] [Google Scholar]

158. Pearce KA, Grimm RH, Jr, Rao S, Svendsen K, Liebson PR, Neaton JD, et al. Population-derived comparisons of ambulatory and office blood pressures: implications for the determination of usual blood pressure and the concept of white coat hypertension. Arch Intern Med 1992; 152:750–756. [PubMed] [Google Scholar]

159. Enstrom I, Thulin T, Lindholm L. How good are standardized blood pressure recordings for diagnosing hypertension? A comparison between office and ambulatory blood pressure. J Hypertens 1991; 9:561–566. [PubMed] [Google Scholar]

160. Mancia G. Methods for assessing blood pressure values in humans. Hypertension 1983; 5:III5–III13. [PubMed] [Google Scholar]

161. Mader SL. Effects of meals and time of day on postural blood pressure responses in young and elderly subjects. Arch Intern Med 1989; 149:2757–2760. [PubMed] [Google Scholar]

162. Araghi A, Bander JJ, Guzman JA. Arterial blood pressure monitoring in overweight critically ill patients: invasive or noninvasive? Crit Care 2006; 10:R64–R164. [PMC free article] [PubMed] [Google Scholar]

163. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, et al. Human blood pressure determination by sphygmomanometry. Circulation 1993; 88:2460–2470. [PubMed] [Google Scholar]

164. Buchanan S, Orris P, Karliner J. Alternatives to the mercury sphygmomanometer. J Public Health Policy 2011; 32:107–120. [PubMed] [Google Scholar]

165. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 2010; 47:931–936. [Google Scholar]

166. Latman NS, Lanier R. Expressions of accuracy in the evaluation of biomedical instrumentation. Biomed Instrum Technol 1998; 32:282. [PubMed] [Google Scholar]

167. Ochiai H, Miyazaki N, Miyata T, Mitake A, Tochikubo O, Ishii M. Assessment of the accuracy of indirect blood pressure measurements. Jpn Heart J 1997; 38:393–407. [PubMed] [Google Scholar]

168. White WB, Lund-Johansen P, Omvik P. Assessment of four ambulatory blood pressure monitors and measurements by clinicians versus intraarterial blood pressure at rest and during exercise. Am J Cardiol 1990; 65:60–66. [PubMed] [Google Scholar]

169. Cohn JN. Blood pressure measurement in shock. Mechanism of inaccuracy in ausculatory and palpatory methods. JAMA 1967; 199:118–122. [PubMed] [Google Scholar]

170. Bos WJ, van Goudoever J, Wesseling KH, Rongen GA, Hoedemaker G, Lenders JW, et al. Pseudohypertension and the measurement of blood pressure. Hypertension 1992; 20:26–31. [PubMed] [Google Scholar]

171. Ribezzo S, Spina E, Di Bartolomeo S, Sanson G. Noninvasive techniques for blood pressure measurement are not a reliable alternative to direct measurement: a randomized crossover trial in ICU. Sci World J 2014; 2014:1–8. [PMC free article] [PubMed] [Google Scholar]

172. Turjanmaa V. Determination of blood pressure level and changes in physiological situations: comparison of the standard cuff method with direct intra-arterial recording. Clin Physiol 1989; 9:373–387. [PubMed] [Google Scholar]

173. Saxena Y, Saxena V, Gupta R. Clinical validation of aneroid sphygmomanometer. Indian J Physiol Pharmacol 2012; 56:255–261. [PubMed] [Google Scholar]

174. Ferreira KA, Santos AC, Arthur TC, Santos DA, Pereira D, Freitas EO, et al. Validation of Missouri aneroid sphygmomanometer to measure blood pressure in patients with cancer. Arq Bras Cardiol 2010; 95:244–250. [PubMed] [Google Scholar]

175. Ma Y, Temprosa M, Fowler S, Prineas RJ, Montez MG, Brown-Friday J, et al. Evaluating the accuracy of an aneroid sphygmomanometer in a clinical trial setting. Am J Hypertens 2009; 22:263–266. [PMC free article] [PubMed] [Google Scholar]

176. Nelson D, Kennedy B, Regnerus C, Schweinle A. Accuracy of automated blood pressure monitors. J Dent Hyg 2008; 82:35–135. [PubMed] [Google Scholar]

177. Dorigatti F, Bonso E, Zanier A, Palatini P. Validation of Heine Gamma G7 (G5) and XXL-LF aneroid devices for blood pressure measurement. Blood Press Monit 2007; 12:29–33. [PubMed] [Google Scholar]

178. Reinders A, Jones CR, Cuckson AC, Shennan AH. The Maxi Stabil 3: validation of an aneroid device according to a modified British Hypertension Society protocol. Blood Press Monit 2003; 8:83–89. [PubMed] [Google Scholar]

179. Braam RL, de Maat C, Thien T. Accuracy of the Welch Allyn Vital Signs Monitor 52000 automatic blood pressure measuring device according to a modified British Hypertension Society protocol. Blood Press Monit 2002; 7:185–189. [PubMed] [Google Scholar]

180. Skirton H, Chamberlain W, Lawson C, Ryan H, Young E. A systematic review of variability and reliability of manual and automated blood pressure readings. J Clin Nurs 2011; 20:602–614. [PubMed] [Google Scholar]

181. Wan Y, Heneghan C, Stevens R, McManus RJ, Ward A, Perera R, et al. Determining which automatic digital blood pressure device performs adequately: a systematic review. J Hum Hypertens 2010; 24:431–438. [PMC free article] [PubMed] [Google Scholar]

182. McMahon N, Hogg LA, Corfield AR, Exton AD. Comparison of noninvasive and invasive blood pressure in aeromedical care. Anaesthesia 2012; 67:1343–1347. [PubMed] [Google Scholar]

183. Mireles SA, Jaffe RA, Drover DR, Brock-Utne JG. A poor correlation exists between oscillometric and radial arterial blood pressure as measured by the Philips MP90 monitor. J Clin Monit Comput 2009; 23:169–174. [PubMed] [Google Scholar]

184. Muecke S, Bersten A, Plummer J. The mean machine; accurate noninvasive blood pressure measurement in the critically ill patient. J Clin Monit Comput 2009; 23:283–297. [PubMed] [Google Scholar]

185. Ohte N, Saeki T, Miyabe H, Sakata S, Mukai S, Hayano J, et al. Relationship between blood pressure obtained from the upper arm with a cuff-type sphygmomanometer and central blood pressure measured with a catheter-tipped micromanometer. Heart Vessels 2007; 22:410–415. [PubMed] [Google Scholar]

186. Manios E, Vemmos K, Tsivgoulis G, Barlas G, Koroboki E, Eleni K, et al. Comparison of noninvasive oscillometric and intra-arterial blood pressure measurements in hyperacute stroke. Blood Press Monit 2007; 12:149–156. [PubMed] [Google Scholar]

187. Weber F, Lindemann M, Erbel R, Philipp T. Indirect and direct simultaneous, comparative blood pressure measurements with the Bosotron 2 device. Kidney Blood Press Res 1999; 22:166–171. [PubMed] [Google Scholar]

188. Lehmann KG, Gelman JA, Weber MA, Lafrades A. Comparative accuracy of three automated techniques in the noninvasive estimation of central blood pressure in men. Am J Cardiol 1998; 81:1004–1012. [PubMed] [Google Scholar]

189. Russell AE, Tonkin AL, Wing LM, Hassam RM, McRitchie RJ, Aylward PE, et al. Accuracy of the Takeda TM-2420 ambulatory blood pressure monitor. Clin Exp Pharmacol Physiol 1989; 16:253–256. [PubMed] [Google Scholar]

190. Lim Y-H, Choi SY, Oh KW, Kim Y, Cho ES, Choi BY, et al. Comparison between an automated device and a manual mercury sphygmomanometer in an epidemiological survey of hypertension prevalence. Am J Hypertens 2014; 27:537–545. [PubMed] [Google Scholar]

191. Collins M, Cummings A, Skaggs C, Weller R, Cronin SN. Differences in manual and automatic blood pressures in telemetry patients with atrial fibrillation. Dimens Crit Care Nurs 2013; 32:262–265. [PubMed] [Google Scholar]

192. Ishikawa J, Nasothimiou EG, Karpettas N, McDoniel S, Feltheimer SD, Stergiou GS, et al. Automatic office blood pressure measured without doctors or nurses present. Blood Press Monit 2012; 17:96–102. [PMC free article] [PubMed] [Google Scholar]

193. Eguchi K, Kuruvilla S, Ishikawa J, Ogedegbe G, Gerin W, Schwartz JE, et al. Correlations between different measures of clinic, home, and ambulatory blood pressure in hypertensive patients. Blood Press Monit 2011; 16:142–148. [PubMed] [Google Scholar]

194. Lamarre-Cliché M, Cheong NNG, Larochelle P. Comparative assessment of four blood pressure measurement methods in hypertensives. Can J Cardiol 2011; 27:455–460. [PubMed] [Google Scholar]

195. Vera-Cala LM, Orostegui M, Valencia-Angel LI, López N, Bautista LE. Accuracy of the Omron HEM-705 CP for blood pressure measurement in large epidemiologic studies. Arq Bras Cardiol 2011; 96:393–398. [PubMed] [Google Scholar]

196. Ostchega Y, Nwankwo T, Sorlie PD, Wolz M, Zipf G. Assessing the validity of the Omron HEM-907XL oscillometric blood pressure measurement device in a National Survey environment. J Clin Hypertens 2010; 12:22–28. [PMC free article] [PubMed] [Google Scholar]

197. Heinemann M, Sellick K, Rickard C, Reynolds P, McGrail M. Automated versus manual blood pressure measurement: a randomized crossover trial. Int J Nurs Pract 2008; 14:296–302. [PubMed] [Google Scholar]

198. Bern L, Brandt M, Mbelu N, Asonye U, Fisher T, Shaver Y, et al. Differences in blood pressure values obtained with automated and manual methods in medical inpatients. Medsurg Nurs 2007; 16:356–361. [PubMed] [Google Scholar]

199. Coleman A, Freeman P, Steel S, Shennan A. Validation of the Omron 705IT (HEM-759-E) oscillometric blood pressure monitoring device according to the British Hypertension Society protocol. Blood Press Monit 2006; 11:27–32. [PubMed] [Google Scholar]

200. Semret M, Zidehsarai M, Agarwal R. Accuracy of oscillometric blood pressure monitoring with concurrent auscultatory blood pressure in hemodialysis patients. Blood Press Monit 2005; 10:249–255. [PubMed] [Google Scholar]

201. Alpert BS. Validation of the Pharma-Smart PS-2000 public use blood pressure monitor. Blood Press Monit 2004; 9:19–23. [PubMed] [Google Scholar]

202. Cienki JJ, DeLuca LA, Daniel N. The validity of emergency department triage blood pressure measurements. Acad Emerg Med 2004; 11:237–243. [PubMed] [Google Scholar]

203. Graves JW, Nash C, Burger K, Bailey K, Sheps SG. Clinical decision-making in hypertension using an automated (BpTRU) measurement device. J Hum Hypertens 2003; 17:823–827. [PubMed] [Google Scholar]

204. Shahriari M, Rotenberg DK, Nielsen JK, Wiinberg N, Nielsen PE. Measurement of arm blood pressure using different oscillometry manometers compared to auscultatory readings. Blood Press 2003; 12:155–159. [PubMed] [Google Scholar]

205. White WB, Herbst T, Thavarajah S, Giacco S. Clinical evaluation of the Trimline blood pressure cuffs with the Accutorr Plus Monitor. Blood Press Monit 2003; 8:137–140. [PubMed] [Google Scholar]

206. Beaubien ER, Card CM, Card SE, Biem HJ, Wilson TW. Accuracy of the Dinamap 1846 XT automated blood pressure monitor. J Hum Hypertens 2002; 16:647–652. [PubMed] [Google Scholar]

207. Coe T, Houghton K. Comparison of the automated Dinamap blood pressure monitor with the mercury sphygmomanometer for detecting hypertension in the day case preassessment clinic. Ambul Surg 2002; 10:9–15. [Google Scholar]

208. Cuckson AC, Reinders A, Shabeeh H, Shennan AH. British Hypertension Society. Validation of the Microlife BP 3BTO-A oscillometric blood pressure monitoring device according to a modified British Hypertension Society protocol. Blood Press Monit 2002; 7:319–324. [PubMed] [Google Scholar]

209. El Assaad MA, Topouchian JA, Darné BM, Asmar RG. Validation of the Omron HEM-907 device for blood pressure measurement. Blood Press Monit 2002; 7:237–241. [PubMed] [Google Scholar]

210. Golara M, Jones C, Randhawa M, Shennan AH. Inflationary oscillometric blood pressure monitoring: validation of the OMRON-MIT. Blood Press Monit 2002; 7:325–328. [PubMed] [Google Scholar]

211. Mattu GS, Perry TL, Jr, Wright JM. Comparison of the oscillometric blood pressure monitor (BPM-100(Beta)) with the auscultatory mercury sphygmomanometer. Blood Press Monit 2001; 6:153–159. [PubMed] [Google Scholar]

212. White WB, Anwar YA. Evaluation of the overall efficacy of the Omron office digital blood pressure HEM-907 monitor in adults. Blood Press Monit 2001; 6:107–110. [PubMed] [Google Scholar]

213. Wright JM, Mattu GS, Perry TL, Jr, Gelferc ME, Strange KD, Zorn A, et al. Validation of a new algorithm for the BPM-100 electronic oscillometric office blood pressure monitor. Blood Press Monit 2001; 6:161–165. [PubMed] [Google Scholar]

214. Cavalcanti S, Marchesi G, Ghidini C. Validation of automated oscillometric sphygmomanometer (HDBPM) for arterial pressure measurement during haemodialysis. Med Biol Eng Comput 2000; 38:98–101. [PubMed] [Google Scholar]

215. Kuo CS, Hwu CM, Kwok CF, Hsiao LC, Weih MJ, Lee SH, et al. Using semi-automated oscillometric blood pressure measurement in diabetic patients and their offspring. J Diabet Complications 2000; 14:288–293. [PubMed] [Google Scholar]

216. Anwar YA, Giacco S, McCabe EJ, Tendler BE, White WB. Evaluation of the efficacy of the Omron HEM-737 IntelliSense device for use on adults according to the recommendations of the Association for the Advancement of Medical Instrumentation. Blood Press Monit 1998; 3:261–265. [PubMed] [Google Scholar]

217. Kwek K, Chan YG, Tan KH, Yeo GS. Validation of an oscillometric electronic sphygmomanometer in an obstetric population. Am J Hypertens 1998; 11:978–982. [PubMed] [Google Scholar]

218. Shuler CL, Allison N, Holcomb S, Harlan M, McNeill J, Robinett G, et al. Accuracy of an automated blood pressure device in stable inpatients: optimum vs routine use. Arch Intern Med 1998; 158:714–721. [PubMed] [Google Scholar]

219. Cartwright C, Unwin N, Stephenson P. Agreement between the Takeda UA-731 automatic blood pressure measuring device and the manual mercury sphygmomanometer: an assessment under field conditions in Newcastle upon Tyne, UK. J Epidemiol Community Health 1996; 50:218–222. [PMC free article] [PubMed] [Google Scholar]

220. Goonasekera CD, Dillon MJ. Random zero sphygmomanometer versus automatic oscillometric blood pressure monitor; is either the instrument of choice? J Hum Hypertens 1995; 9:885–889. [PubMed] [Google Scholar]

221. Imai Y, Hashimoto J, Minami N, Munakata M, Watanabe N, Sakuma H, et al. Accuracy and performance of the Terumo ES-H51, a new portable blood pressure monitor. Am J Hypertens 1994; 7:255–260. [PubMed] [Google Scholar]

222. Jamieson MJ, Webster J, Witte K, Huggins MM, MacDonald TM, de Beaux A, et al. An evaluation of the A&D UA-751 semi-automated cuff-oscillometric sphygmomanometer. J Hypertens 1990; 8:377–381. [PubMed] [Google Scholar]

223. Dawson AJ, Middlemiss C, Vanner TF. Miniature electronic blood pressure monitor compared with a blind-reading mercury sphygmomanometer in pregnancy. Eur J Obstet Gynecol Reprod Biol 1989; 33:147–153. [PubMed] [Google Scholar]

224. Johnston DW, Shah D. An evaluation of the Takeda UA751 automatic sphygmomanometer. Behav Res Ther 1989; 27:203–204. [PubMed] [Google Scholar]

225. Jenner DA, Beilin LJ, Vandongen R, DeKlerk NH. A comparison of blood pressure measurements obtained with the Dinamap 845XT, the standard mercury sphygmomanometer and the London School of Hygiene device. Clin Exp Hypertens 1988; 10:575–588. [PubMed] [Google Scholar]

226. Malatino LS, Brown WC. Comparison of a new portable electronic sphygmomanometer (Copal UA251) with the Hawksley random zero machine. Clin Exp Hypertens 1988; 10:589–596. [PubMed] [Google Scholar]

227. Bassein L, Borghi C, Costa FV, Strocchi E, Mussi A, Ambrosioni E. Comparison of three devices for measuring blood pressure. Stat Med 1985; 4:361–368. [PubMed] [Google Scholar]

228. Foran TG, Sheahan NF, Cunningham C, Feely J. Pseudo-hypertension and arterial stiffness: a review. Physiol Meas 2004; 25:R21–33. [PubMed] [Google Scholar]

229. A’Court C, Stevens R, Sanders S, Ward A, McManus R, Heneghan C. Type and accuracy of sphygmomanometers in primary care: a cross-sectional observational study. Br J Gen Pract 2011; 61:e598–e603. [PMC free article] [PubMed] [Google Scholar]

230. de Greeff A, Lorde I, Wilton A, Seed P, Coleman AJ, Shennan AH. Calibration accuracy of hospital-based noninvasive blood pressure measuring devices. J Hum Hypertens 2010; 24:58–63. [PubMed] [Google Scholar]

231. Coleman AJ, Steel SD, Ashworth M, Vowler SL, Shennan A. Accuracy of the pressure scale of sphygmomanometers in clinical use within primary care. Blood Press Monit 2005; 10:181–188. [PubMed] [Google Scholar]

232. Shah N, Sibbritt D, Heaney S, Sharples J. Sphygmomanometers: an audit in general practice. Aust Fam Physician 2004; 33:952–954. [PubMed] [Google Scholar]

233. Waugh JJS, Gupta M, Rushbrook J, Halligan A, Shennan AH. Hidden errors of aneroid sphygmomanometers. Blood Press Monit 2002; 7:309–312. [PubMed] [Google Scholar]

234. Ashworth M, Gordon K, Baker G, Deshmukh A. Sphygmomanometer calibration: a survey of one inner-city primary care group. J Hum Hypertens 2001; 15:259–262. [PubMed] [Google Scholar]

235. Knight T, Leech F, Jones A, Walker L, Wickramasinghe R, Angris S, et al. Sphygmomanometers in use in general practice: an overlooked aspect of quality in patient care. J Hum Hypertens 2001; 15:681–684. [PubMed] [Google Scholar]

236. Jones JS, Ramsey W, Hetrick T. Accuracy of prehospital sphygmomanometers. J Emerg Med 1987; 5:23–27. [PubMed] [Google Scholar]

237. Burke MJ, Towers HM, O’Malley K, Fitzgerald DJ, O’Brien ET. Sphygmomanometers in hospital and family practice: problems and recommendations. Br Med J (Clin Res Ed) 1982; 285:469–471. [PMC free article] [PubMed] [Google Scholar]

238. Shaw A, Deehan C, Lenihan JMA. Sphygmomanometers: errors due to blocked vents. BMJ 1979; 1:789–790. [PMC free article] [PubMed] [Google Scholar]

239. Amoore JN, Guehenec M, Scordecchia R, Scott DHT. Auditing the technology used to measure blood pressure. J Med Eng Technol 2010; 34:209–216. [PubMed] [Google Scholar]

240. Cozanitis DA, Jones CJ. The extent of inaccurate aneroid sphygmomanometers in a hospital setting. Wien Med Wochenschr 2010; 160:356–361. [PubMed] [Google Scholar]

241. Moore TA, Sorokin AV, Hirst C, Thornton-Thompson S, Thompson PD. The accuracy of aneroid sphygmomanometers in the ambulatory setting. Prev Cardiol 2008; 11:90–94. [PubMed] [Google Scholar]

242. Canzanello VJ, Jensen PL, Schwartz GL. Are aneroid sphygmomanometers accurate in hospital and clinic settings? Arch Intern Med 2001; 161:729–731. [PubMed] [Google Scholar]

243. Yarows SA, Qian K. Accuracy of aneroid sphygmomanometers in clinical usage: University of Michigan experience. Blood Press Monit 2001; 6:101–106. [PubMed] [Google Scholar]

244. Başak O, Karazeybek Ş. Accuracy of sphygmomanometers. Turk J Med Sci 1999; 29:487–491. [Google Scholar]

245. Mion D, Pierin AM. How accurate are sphygmomanometers? J Hum Hypertens 1998; 12:245–248. [PubMed] [Google Scholar]

246. Knaus VL, Bailey RH, Bauer JH. Aneroid sphygmomanometers: an assessment of accuracy at a university hospital and clinics. Arch Intern Med 1991; 151:1409–1412. [PubMed] [Google Scholar]

247. Bowman CE. Blood pressure errors with aneroid sphygmomanometers. Lancet 1981; 1:1005. [PubMed] [Google Scholar]

248. Conceiçao S, Ward MK, Kerr DNS. Defects in sphygmomanometers: an important source of error in blood pressure recording. BMJ 1976; 1:886–888. [PMC free article] [PubMed] [Google Scholar]

249. Nikolic SB, Abhayaratna WP, Leano R, Stowasser M, Sharman JE. Waiting a few extra minutes before measuring blood pressure has potentially important clinical and research ramifications. J Hum Hypertens 2014; 28:56–61. [PubMed] [Google Scholar]

250. Sala C, Santin E, Rescaldani M, Magrini F. How long shall the patient rest before clinic blood pressure measurement? Am J Hypertens 2006; 19:713–717. [PubMed] [Google Scholar]

251. Zachariah PK, Sheps SG, Moore AG. Office blood pressures in supine, sitting, and standing positions: correlation with ambulatory blood pressures. Int J Cardiol 1990; 28:353–360. [PubMed] [Google Scholar]

252. Eşer I, Khorshid L, Yapucu Günes U, Demir Y. The effect of different body positions on blood pressure. J Clin Nurs 2007; 16:137–140. [PubMed] [Google Scholar]

253. Cicolini G, Pizzi C, Palma E, Bucci M, Schioppa F, Mezzetti A, et al. Differences in blood pressure by body position (supine, Fowler's, and sitting) in hypertensive subjects. Am J Hypertens 2011; 24:1073–1079. [PubMed] [Google Scholar]

254. Cicolini G, Gagliardi G, Ballone E. Effect of Fowler's body position on blood pressure measurement. J Clin Nurs 2010; 19:3581–3583. [PubMed] [Google Scholar]

255. Netea RT, Lenders JWM, Smits P, Thien T. Both body and arm position significantly influence blood pressure measurement. J Hum Hypertens 2003; 17:459–462. [PubMed] [Google Scholar]

256. Netea RT, Smits P, Lenders JW, Thien T. Does it matter whether blood pressure measurements are taken with subjects sitting or supine? J Hypertens 1998; 16:263–268. [PubMed] [Google Scholar]

257. Terént A, Breig-Asberg E. Epidemiological perspective of body position and arm level in blood pressure measurement. Blood Press 1994; 3:156–163. [PubMed] [Google Scholar]

258. Jamieson MJ, Webster J, Philips S, Jeffers TA, Scott AK, Robb OJ, et al. The measurement of blood pressure: sitting or supine, once or twice? J Hypertens 1990; 8:635–640. [PubMed] [Google Scholar]

259. Carel RS, Silverberg DS, Shoenfeld Y, Eldar M, Snir C, Mor G. Changes in blood pressure in the lying and sitting positions in normotensive, borderline and hypertensive subjects. Am J Med Sci 1983; 285:2–11. [PubMed] [Google Scholar]

260. Pinar R, Ataalkin S, Watson R. The effect of crossing legs on blood pressure in hypertensive patients. J Clin Nurs 2010; 19:1284–1288. [PubMed] [Google Scholar]

261. Adiyaman A, Tosun N, Elving LD, Deinum J, Lenders JWM, Thien T. The effect of crossing legs on blood pressure. Blood Press Monit 2007; 12:189–193. [PubMed] [Google Scholar]

262. Pinar R, Sabuncu N, Oksay A. Effects of crossed leg on blood pressure. Blood Press 2004; 13:252–254. [PubMed] [Google Scholar]

263. Avvampato CS. Effect of one leg crossed over the other at the knee on blood pressure in hypertensive patients. Nephrol Nurs J 2001; 28:325–328. [PubMed] [Google Scholar]

264. Keele-Smith R, Price-Daniel C. Effects of crossing legs on blood pressure measurement. Clin Nurs Res 2001; 10:202–213. [PubMed] [Google Scholar]

265. Foster-Fitzpatrick L, Ortiz A, Sibilano H, Marcantonio R, Braun LT. The effects of crossed leg on blood pressure measurement. Nurs Res 1999; 48:105–108. [PubMed] [Google Scholar]

266. Peters GL, Binder SK, Campbell NR. The effect of crossing legs on blood pressure: a randomized single-blind cross-over study. Blood Press Monit 1999; 4:97–101. [PubMed] [Google Scholar]

267. Cushman WC, Cooper KM, Horne RA, Meydrech EF. Effect of back support and stethoscope head on seated blood pressure determinations. Am J Hypertens 1990; 3:240–241. [PubMed] [Google Scholar]

268. Familoni OB, Olunuga TO. Comparison of the effects of arm position and support on blood pressure in hypertensive and normotensive subjects. Cardiovasc J South Afr 2005; 16:85–88. [PubMed] [Google Scholar]

269. Beck FM, Weaver JM, Blozis GG, Unverferth DV. Effect of arm position and arm support on indirect blood pressure measurements made in a dental chair. J Am Dent Assoc 1983; 106:645–647. [PubMed] [Google Scholar]

270. Silverberg DS, Shemesh E, Iaina A. The unsupported arm: a cause of falsely raised blood pressure readings. BMJ 1977; 2:1331–11331. [PMC free article] [PubMed] [Google Scholar]

271. Adiyaman A, Verhoeff R, Lenders JWM, Deinum J, Thien T. The position of the arm during blood pressure measurement in sitting position. Blood Press Monit 2006; 11:309–313. [PubMed] [Google Scholar]

272. Hemingway TJ, Guss DA, Abdelnur D. Arm position and blood pressure measurement. Ann Intern Med 2004; 140:74–75. [PubMed] [Google Scholar]

273. Mourad A, Carney S, Gillies A, Jones B, Nanra R, Trevillian P. Arm position and blood pressure: a risk factor for hypertension? J Hum Hypertens 2003; 17:389–395. [PubMed] [Google Scholar]

274. Netea RT, Lenders JW, Smits P, Thien T. Arm position is important for blood pressure measurement. J Hum Hypertens 1999; 13:105–109. [PubMed] [Google Scholar]

275. Parr GD, Poole PH. Effects of sphygmomanometer type and position of the arm on blood pressure measurement. J Hum Hypertens 1988; 2:153–156. [PubMed] [Google Scholar]

276. Mariotti G, Alli C, Avanzini F, Canciani C, Di Tullio M, Manzini M, et al. Arm position as a source of error in blood pressure measurement. Clin Cardiol 1987; 10:591–593. [PubMed] [Google Scholar]

277. Waal-Manning HJ, Paulin JM. Effects of arm position and support on blood-pressure readings. J Clin Hypertens 1987; 3:624–630. [PubMed] [Google Scholar]

278. Webster J, Newnham D, Petrie JC, Lovell HG. Influence of arm position on measurement of blood pressure. Br Med J Clin Res Ed 1984; 288:1574–1575. [PMC free article] [PubMed] [Google Scholar]

279. Fonseca-Reyes S, Fajardo-Flores I, Montes-Casillas M, Forsyth-Macquarrie A. Differences and effects of medium and large adult cuffs on blood pressure readings in individuals with muscular arms. Blood Press Monit 2009; 14:166–171. [PubMed] [Google Scholar]

280. Fonseca-Reyes S, de Alba-García JG, Parra-Carrillo JZ, Paczka-Zapata JA. Effect of standard cuff on blood pressure readings in patients with obese arms. How frequent are arms of a ‘large circumference’? Blood Press Monit 2003; 8:101–106. [PubMed] [Google Scholar]

281. Bakx C, Oerlemans G, van den Hoogen H, van Weel C, Thien T. The influence of cuff size on blood pressure measurement. J Hum Hypertens 1997; 11:439–445. [PubMed] [Google Scholar]

282. Iyriboz Y, Hearon CM, Edwards K. Agreement between large and small cuffs in sphygmomanometry: a quantitative assessment. J Clin Monit 1994; 10:127–133. [PubMed] [Google Scholar]

283. Sprafka JM, Strickland D, Gómez-Marín O, Prineas RJ. The effect of cuff size on blood pressure measurement in adults. Epidemiol 1991; 2:214–217. [PubMed] [Google Scholar]

284. Pinar R, Ataalkin S, Watson R. The effect of clothes on sphygmomanometric blood pressure measurement in hypertensive patients. J Clin Nurs 2010; 19:1861–1864. [PubMed] [Google Scholar]

285. Liebl M, Holzgreve H, Schulz M, Crispin A, Bogner J. The effect of clothes on sphygmomanometric and oscillometric blood pressure measurement. Blood Press 2004; 13:279–282. [PubMed] [Google Scholar]

286. Kahan E, Yaphe J, Knaani-Levinz H, Weingarten MA. Comparison of blood pressure measurements on the bare arm, below a rolled-up sleeve, or over a sleeve. Fam Pract 2003; 20:730–732. [PubMed] [Google Scholar]

287. Holleman DR, Jr, Westman EC, McCrory DC, Simel DL. The effect of sleeved arms on oscillometric blood pressure measurement. J Gen Intern Med 1993; 8:325–326. [PubMed] [Google Scholar]

288. Weber F, Anlauf M, Hirche H, Roggenbuck U, Philipp T. Differences in blood pressure values by simultaneous auscultation of Korotkoff sounds inside the cuff and in the antecubital fossa. J Hum Hypertens 1999; 13:695–700. [PubMed] [Google Scholar]

289. Ljungvall P, Thulin T. Hand-free stethoscope – method and instrument for more reliable blood pressure measurements. J Intern Med 1991; 230:213–217. [PubMed] [Google Scholar]

290. Zheng D, Giovannini R, Murray A. Effect of respiration, talking and small body movements on blood pressure measurement. J Hum Hypertens 2012; 26:458–462. [PubMed] [Google Scholar]

291. Le Pailleur C, Montgermont P, Feder JM, Metzger JP, Vacheron A. Talking effect and ‘white coat’ effect in hypertensive patients: physical effort or emotional content? Behav Med 2001; 26:149–157. [PubMed] [Google Scholar]

292. Le Pailleur C, Vacheron A, Landais P, Mounier-Véhier C, Feder JM, Montgermont P, et al. Talking effect and white coat phenomenon in hypertensive patients. Behav Med 1996; 22:114–122. [PubMed] [Google Scholar]

293. Liehr P. Uncovering a hidden language: the effects of listening and talking on blood pressure and heart rate. Arch Psychiatr Nurs 1992; 6:306–311. [PubMed] [Google Scholar]

294. Hellmann R, Grimm SA. The influence of talking on diastolic blood pressure readings. Res Nurs Health 1984; 7:253–256. [PubMed] [Google Scholar]

295. Malinow KL, Lynch JJ, Thomas SA, Friedmann E, Long JM. Automated blood pressure recording: the phenomenon of blood pressure elevations during speech. Angiology 1982; 33:474–479. [PubMed] [Google Scholar]

296. Kantola I, Vesalainen R, Kangassalo K, Kariluoto A. Bell or diaphragm in the measurement of blood pressure? J Hypertens 2005; 23:499–503. [PubMed] [Google Scholar]

297. Norman E, Gadaleta D, Griffin CC. An evaluation of three blood pressure methods in a stabilized acute trauma population. Nurs Res 1991; 40:86–89. [PubMed] [Google Scholar]

298. Byra-Cook CJ, Dracup KA, Lazik AJ. Direct and indirect blood pressure in critical care patients. Nurs Res 1990; 39:285–288. [PubMed] [Google Scholar]

299. Mauro AM. Effects of bell versus diaphragm on indirect blood pressure measurement. Heart Lung J Crit Care 1988; 17:489–494. [PubMed] [Google Scholar]

300. Londe S, Klitzner TS. Auscultatory blood pressure measurement – effect of pressure on the head of the stethoscope. West J Med 1984; 141:193–195. [PMC free article] [PubMed] [Google Scholar]

301. Zheng D, Amoore JN, Mieke S, Murray A. How important is the recommended slow cuff pressure deflation rate for blood pressure measurement? Ann Biomed Eng 2011; 39:2584–2591. [PubMed] [Google Scholar]

302. Reinders LW, Mos CN, Thornton C, Ogle R, Makris A, Child A, et al. Time poor: rushing decreases the accuracy and reliability of blood pressure measurement technique in pregnancy. Hypertens Pregnancy 2006; 25:81–91. [PubMed] [Google Scholar]

303. Yong PG, Geddes LA. The effect of cuff pressure deflation rate on accuracy in indirect measurement of blood pressure with the auscultatory method. J Clin Monit 1987; 3:155–159. [PubMed] [Google Scholar]

304. Myers MG, Valdivieso M, Kiss A. Optimum frequency of office blood pressure measurement using an automated sphygmomanometer. Blood Press Monit 2008; 13:333–338. [PubMed] [Google Scholar]

305. Yarows SA, Patel K, Brook R. Rapid oscillometric blood pressure measurement compared to conventional oscillometric measurement. Blood Press Monit 2001; 6:145–147. [PubMed] [Google Scholar]

306. Koehler NR, Figueiredo CEP, Ribeiro ACM. Serial blood pressure measurements. Braz J Med Biol Res 2002; 35:555–559. [PubMed] [Google Scholar]

307. van Loo JM, Peer PG, Thien TA. Twenty-five minutes between blood pressure readings: the influence on prevalence rates of isolated systolic hypertension. J Hypertens 1986; 4:631–635. [PubMed] [Google Scholar]

308. Burstyn P, O’Donovan B, Charlton I. Blood pressure variability: the effects of repeated measurement. Postgrad Med J 1981; 57:488–491. [PMC free article] [PubMed] [Google Scholar]

309. Verberk WJ, Kessels AGH, Thien T. Blood pressure measurement method and inter-arm differences: a meta-analysis. Am J Hypertens 2011; 24:1201–1208. [PubMed] [Google Scholar]

310. Clark CE, Campbell JL, Evans PH, Millward A. Prevalence and clinical implications of the inter-arm blood pressure difference: a systematic review. J Hum Hypertens 2006; 20:923–931. [PubMed] [Google Scholar]

311. Agarwal R, Bunaye Z, Bekele D. Prognostic significance of between-arm blood pressure differences. Hypertension 2008; 51:657–662. [PubMed] [Google Scholar]

312. Lazar J, Holman S, Minkoff HL, Dehovitz JA, Sharma A. Interarm blood pressure differences in the women's interagency HIV study. AIDS Res Hum Retroviruses 2008; 24:695–700. [PubMed] [Google Scholar]

313. Poon LCY, Kametas N, Strobl I, Pachoumi C, Nicolaides KH. Inter-arm blood pressure differences in pregnant women. BJOG Int J Obstet Gynaecol 2008; 115:1122–1130. [PubMed] [Google Scholar]

314. Stergiou GS, Lin C-W, Lin C-M, Chang S-L, Protogerou AD, Tzamouranis D, et al. Automated device that complies with current guidelines for office blood pressure measurement: design and pilot application study of the Microlife WatchBP Office device. Blood Press Monit 2008; 13:231–235. [PubMed] [Google Scholar]

315. Clark CE, Campbell JL, Powell RJ, Thompson JF. The inter-arm blood pressure difference and peripheral vascular disease: cross-sectional study. Fam Pract 2007; 24:420–426. [PubMed] [Google Scholar]

316. Clark CE, Campbell JL, Powell RJ. The interarm blood pressure difference as predictor of cardiovascular events in patients with hypertension in primary care: cohort study. J Hum Hypertens 2007; 21:633–638. [PubMed] [Google Scholar]

317. Eguchi K, Yacoub M, Jhalani J, Gerin W, Schwartz JE, Pickering TG. Consistency of blood pressure differences between the left and right arms. Arch Intern Med 2007; 167:388–393. [PubMed] [Google Scholar]

318. Arnett DK, Tang W, Province MA, Oberman A, Ellison RC, Morgan D, et al. Interarm differences in seated systolic and diastolic blood pressure: the Hypertension Genetic Epidemiology Network study. J Hypertens 2005; 23:1141–1147. [PubMed] [Google Scholar]

319. Karagiannis A, Tziomalos K, Krikis N, Sfikas G, Dona K, Zamboulis C. The unilateral measurement of blood pressure may mask the diagnosis or delay the effective treatment of hypertension. Angiology 2005; 56:565–569. [PubMed] [Google Scholar]

320. Kimura A, Hashimoto J, Watabe D, Takahashi H, Ohkubo T, Kikuya M, et al. Patient characteristics and factors associated with inter-arm difference of blood pressure measurements in a general population in Ohasama, Japan. J Hypertens 2004; 22:2277–2283. [PubMed] [Google Scholar]

321. Chang JJ, Rabinowitz D, Shea S. Sources of variability in blood pressure measurement using the Dinamap PRO 100 automated oscillometric device. Am J Epidemiol 2003; 158:1218–1226. [PubMed] [Google Scholar]

322. Lane D, Beevers M, Barnes N, Bourne J, John A, Malins S, et al. Inter-arm differences in blood pressure: when are they clinically significant? J Hypertens 2002; 20:1089–1095. [PubMed] [Google Scholar]

323. Pesola GR, Pesola HR, Lin M, Nelson MJ, Westfal RE. The normal difference in bilateral indirect blood pressure recordings in hypertensive individuals. Acad Emerg Med 2002; 9:342–345. [PubMed] [Google Scholar]

324. Cassidy P, Jones K. A study of inter-arm blood pressure differences in primary care. J Hum Hypertens 2001; 15:519–522. [PubMed] [Google Scholar]

325. Fotherby MD, Panayiotou B, Potter JF. Age-related differences in simultaneous interarm blood pressure measurements. Postgrad Med J 1993; 69:194–196. [PMC free article] [PubMed] [Google Scholar]

326. Cavallini MC, Roman MJ, Blank SG, Pini R, Pickering TG, Devereux RB. Association of the auscultatory gap with vascular disease in hypertensive patients. Ann Intern Med 1996; 124:877–883. [PubMed] [Google Scholar]

327. Askey JM. The auscultatory gap in sphygmomanometry. Ann Intern Med 1974; 80:94–97. [PubMed] [Google Scholar]

328. Song S, Lee J, Chee Y, Jang DP, Kim IY. Does the accuracy of blood pressure measurement correlate with hearing loss of the observer? Blood Press Monit 2014; 19:14–18. [PubMed] [Google Scholar]

329. Allen J, Gehrke T, O'Sullivan JJ, King ST, Murray A. Characterization of the Korotkoff sounds using joint time-frequency analysis. Physiol Meas 2004; 25:107–117. [PubMed] [Google Scholar]

330. Stenklev NC, Laukli E. Presbyacusis-hearing thresholds and the ISO 7029. Int J Audiol 2004; 43:295–306. [PubMed] [Google Scholar]

332. Walker SP, Higgins JR, Brennecke SP. The diastolic debate: is it time to discard Korotkoff phase IV in favour of phase V for blood pressure measurements in pregnancy? Med J 1998; 169:203–205. [PubMed] [Google Scholar]

333. Londe S. Fifth versus fourth Korotkoff phase. Pediatrics 1985; 76:460–461. [PubMed] [Google Scholar]

334. Villar J, Repke J, Markush L, Calvert W, Rhoads G. The measuring of blood pressure during pregnancy. Am J Obstet Gynecol 1989; 161:1019–1024. [PubMed] [Google Scholar]

335. Folsom AR, Prineas RJ, Jacobs DR, Luepker RV, Gillum RF. Measured differences between fourth and fifth phase diastolic blood pressures in 4885 adults: implications for blood pressure surveys. Int J Epidemiol 1984; 13:436–441. [PubMed] [Google Scholar]

336. Wang Y, Wang Y, Qain Y, Zhang J, Tang X, Sun J, et al. Longitudinal change in end-digit preference in blood pressure recordings of patients with hypertension in primary care clinics: Minhang study. Blood Press Monit 2015; 20:74–78. [PubMed] [Google Scholar]

337. Odili AN, Ameh VO, Ogedengbe JO, Staessen JA. Quality of blood pressure phenotype in the Nigerian Population Research on Environment Gene and Health. Blood Press Monit 2014; 19:220–225. [PubMed] [Google Scholar]

338. Ayodele OE, Sanya EO, Okunola OO, Akintunde AA. End digit preference in blood pressure measurement in a hypertension specialty clinic in southwest Nigeria. Cardiovasc J Afr 2012; 23:85–89. [PMC free article] [PubMed] [Google Scholar]

339. Cienki JJ, DeLuca LA. Agreement between emergency medical services and expert blood pressure measurements. J Emerg Med 2012; 43:64–68. [PubMed] [Google Scholar]

340. Jie G, Jian W, Qiaowen H, Shanzhu Z. Investigation of end-digit preference in blood pressure records of hospitalized Chinese patients and analysis of risk factors. Postgrad Med 2012; 124:53–57. [PubMed] [Google Scholar]

341. Lebeau J-P, Pouchain D, Huas D, Wilmart F, Dibao-Dina C, Boutitie F. ESCAPE-ancillary blood pressure measurement study: end-digit preference in blood pressure measurement within a cluster-randomized trial. Blood Press Monit 2011; 16:74–79. [PubMed] [Google Scholar]

342. Mengden T, Asmar R, Kandra A, Di Giovanni R, Brudi P, Parati G. Use of automated blood pressure measurements in clinical trials and registration studies: data from the VALTOP Study. Blood Press Monit 2010; 15:188–194. [PubMed] [Google Scholar]

343. Burnier M, Gasser UE. End-digit preference in general practice: a comparison of the conventional auscultatory and electronic oscillometric methods. Blood Press 2008; 17:104–109. [PubMed] [Google Scholar]

344. Harrison WN, Lancashire RJ, Marshall TP. Variation in recorded blood pressure terminal digit bias in general practice. J Hum Hypertens 2008; 22:163–167. [PubMed] [Google Scholar]

345. Lyratzopoulos G, Heller RF, Hanily M, Lewis PS. Risk factor measurement quality in primary care routine data was variable but nondifferential between individuals. J Clin Epidemiol 2008; 61:261–267. [PubMed] [Google Scholar]

346. Niyonsenga T, Vanasse A, Courteau J, Cloutier L. Impact of terminal digit preference by family physicians and sphygmomanometer calibration errors on blood pressure value: implication for hypertension screening. J Clin Hypertens 2008; 10:341–347. [PMC free article] [PubMed] [Google Scholar]

347. Broad J, Wells S, Marshall R, Jackson R. Zero end-digit preference in recorded blood pressure and its impact on classification of patients for pharmacologic management in primary care – PREDICT-CVD-6. Br J Gen Pract 2007; 57:897–903. [PMC free article] [PubMed] [Google Scholar]

348. Dickson BK, Hajjar I. Blood Pressure Measurement Education and Evaluation Program improves measurement accuracy in community-based nurses: a pilot study. J Am Acad Nurse Pract 2007; 19:93–102. [PubMed] [Google Scholar]

349. Kim ESH, Samuels TA, Yeh H-C, Abuid M, Marinopoulos SS, McCauley JM, et al. End-digit preference and the quality of blood pressure monitoring in diabetic adults. Diabetes Care 2007; 30:1959–1963. [PubMed] [Google Scholar]

350. Roubsanthisuk W, Wongsurin U, Saravich S, Buranakitjaroen P. Blood pressure determination by traditionally trained personnel is less reliable and tends to underestimate the severity of moderate to severe hypertension. Blood Press Monit 2007; 12:61–68. [PubMed] [Google Scholar]

351. Graves JW, Bailey KR, Grossardt BR, Gullerud RE, Meverden RA, Grill DE, et al. The impact of observer and patient factors on the occurrence of digit preference for zero in blood pressure measurement in a hypertension specialty clinic: evidence for the need of continued observation. Am J Hypertens 2006; 19:567–572. [PubMed] [Google Scholar]

352. Nietert PJ, Wessell AM, Feifer C, Ornstein SM. Effect of terminal digit preference on blood pressure measurement and treatment in primary care. Am J Hypertens 2006; 19:147–152. [PubMed] [Google Scholar]

353. de Lusignan S, Belsey J, Hague N, Dzregah B. End-digit preference in blood pressure recordings of patients with ischaemic heart disease in primary care. J Hum Hypertens 2004; 18:261–265. [PubMed] [Google Scholar]

354. McManus RJ, Mant J, Hull MRP, Hobbs FDR. Does changing from mercury to electronic blood pressure measurement influence recorded blood pressure? An observational study. Br J Gen Pract 2003; 53:953–956. [PMC free article] [PubMed] [Google Scholar]

355. Ostchega Y, Prineas RJ, Paulose-Ram R, Grim CM, Willard G, Collins D. National Health and Nutrition Examination Survey 1999–2000: effect of observer training and protocol standardization on reducing blood pressure measurement error. J Clin Epidemiol 2003; 56:768–774. [PubMed] [Google Scholar]

356. Thavarajah S, White WB, Mansoor GA. Terminal digit bias in a specialty hypertension faculty practice. J Hum Hypertens 2003; 17:819–822. [PubMed] [Google Scholar]

357. Ali S, Rouse A. Practice audits: reliability of sphygmomanometers and blood pressure recording bias. J Hum Hypertens 2002; 16:359–361. [PubMed] [Google Scholar]

358. Wingfield D, Freeman GK, Bulpitt CJ. General Practice Hypertension Study Group (GPHSG). Selective recording in blood pressure readings may increase subsequent mortality. QJM 2002; 95:571–577. [PubMed] [Google Scholar]

359. Wingfield D, Cooke J, Thijs L, Staessen JA, Fletcher AE, Fagard R, et al. Terminal digit preference and single-number preference in the Syst-Eur trial: influence of quality control. Blood Press Monit 2002; 7:169–177. [PubMed] [Google Scholar]

360. Ataman SL, Cooper R, Rotimi C, McGee D, Osotimehin B, Kadiri S, et al. Standardization of blood pressure measurement in an international comparative study. J Clin Epidemiol 1996; 49:869–877. [PubMed] [Google Scholar]

361. Torrance C, Serginson E. An observational study of student nurses’ measurement of arterial blood pressure by sphygmomanometry and auscultation. Nurse Educ Today 1996; 16:282–286. [PubMed] [Google Scholar]

362. Wen SW, Kramer MS, Hoey J, Hanley JA, Usher RH. Terminal digit preference, random error, and bias in routine clinical measurement of blood pressure. J Clin Epidemiol 1993; 46:1187–1193. [PubMed] [Google Scholar]

363. Stoneking HT, Hla KM, Samsa GP, Feussner JR. Blood pressure measurements in the nursing home: are they accurate? Gerontologist 1992; 32:536–540. [PubMed] [Google Scholar]

364. Hessel PA. Terminal digit preference in blood pressure measurements: effects on epidemiological associations. Int J Epidemiol 1986; 15:122–125. [PubMed] [Google Scholar]

365. Hla KM, Vokaty KA, Feussner JR. Observer error in systolic blood pressure measurement in the elderly. A case for automatic recorders? Arch Intern Med 1986; 146:2373–2376. [PubMed] [Google Scholar]

366. Patterson HR. Sources of error in recording the blood pressure of patients with hypertension in general practice. BMJ Clin Res Ed 1984; 289:1661–1664. [PMC free article] [PubMed] [Google Scholar]

367. Neufeld PD, Johnson DL. Observer error in blood pressure measurement. Can Med Assoc J 1986; 135:633–637. [PMC free article] [PubMed] [Google Scholar]

368. Gao H, McDonnell A, Harrison D, Moore T, Adam S, Daly K, et al. Systematic review and evaluation of physiological track and trigger warning systems for identifying at-risk patients on the ward. Intensive Care Med 2007; 33:667–679. [PubMed] [Google Scholar]

369. Smith GB, Prytherch DR, Schmidt PE, Featherstone PI. Review and performance evaluation of aggregate weighted ‘track and trigger’ systems. Resuscitation 2008; 77:170–179. [PubMed] [Google Scholar]

370. Christofidis MJ, Hill A, Horswill MS, Watson MO. Observation chart design features affect the detection of patient deterioration: a systematic experimental evaluation. J Adv Nurs 2016; 72:158–172. [PubMed] [Google Scholar]

371. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41:580. [PubMed] [Google Scholar]

372. Sevransky JE, Nour S, Susla GM, Needham DM, Hollenberg S, Pronovost P. Hemodynamic goals in randomized clinical trials in patients with sepsis: a systematic review of the literature. Crit Care 2007; 11:R67. [PMC free article] [PubMed] [Google Scholar]

What can cause a false reading of high blood pressure?

Factors That Can Exaggerate Blood Pressure Readings.
Stress and Anxiety. ... .
A Full Bladder. ... .
Crossed Legs. ... .
Blood Pressure Cuff Placement. ... .
Eating (Or Not Eating) ... .
Alcohol, Caffeine, and Tobacco. ... .
Too Much Talking. ... .
Cold Temperatures..

Which of the following could cause a blood pressure reading to be falsely low?

With a cuff that is too small, the reading may be falsely high; with a cuff that is too large, the reading may be falsely low.

Can a blood pressure machine give a false reading?

A new study revealed that the majority of home blood pressure monitors dispense inaccurate readings. This is extremely upsetting because high blood pressure is the leading cause of death and disability worldwide.

What are three common errors in measuring blood pressure?

Common blood pressure mistakes.
Wrong cuff size..
Cuff positioning..
Patient preparation..
Incorrect patient positioning..
Talking..